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Abstract

A family of partial functions of a class of algebras K is said to be an implicit operation of K when it

is defined by a first order formula and it is preserved by homomorphisms. In this work, we develop

the theory of implicit operations from an algebraic standpoint.

Notably, the implicit operations of an elementary class K are exactly the partial functions on K

definable by existential positive formulas. For instance, “taking inverses” is an implicit operation of

the class of monoids, defined by the conjunction of the equations xy ≈ 1 and yx ≈ 1, saying that

y is the inverse of x. As this example suggests, implicit operations need not be definable by the

terms of the corresponding class of algebras. In fact, the demand that every implicit operation of a

universal class K be interpolated by a family of terms is equivalent to the demand that K has the

strong epimorphism surjectivity property.

However, implicit operations are always interpolated by families of implicit operations of a

simpler kind, namely, those defined by pp formulas, i.e., formulas of the form ∃x⃗φ, where φ is a

conjunction of equations. Motivated by this, we establish an existential elimination theorem stating

that, when K is a quasivariety with the amalgamation property, every implicit operation of K is

interpolated by a family of implicit operations defined by conjunctions of equations (i.e., by pp

formulas without existential quantifiers). We also provide a series of methods to test whether a

concrete class of algebras has the strong epimorphism surjectivity property or, equivalently, to test

whether interpolation can be carried out using terms only.

As the implicit operations of a class of algebras K need not belong to the language of K, it is

natural to wonder whether K can be expanded with its implicit operations. The main obstacle

is that, in general, implicit operations need not be total. Accordingly, we say that an implicit

operation of K is extendable when every member of K can be extended to one in which the operation

is total. For instance, the operation of “taking inverses” is not extendable in the class of monoids,

but it becomes so in the class of cancellative commutative monoids because every such monoid

embeds into an Abelian group.

When expanding a class of algebras K with its pp definable extendable implicit operations produces

a class M in which every implicit operations is interpolated by a family of terms, we say that M is

a Beth companion of K. In the context of quasivarieties, Beth companions are essentially unique,

in the sense that all the Beth companions of a quasivariety are term equivalent. However, Beth

companions need not exist in general: while Abelian groups are the Beth companion of cancellative

commutative monoids, the class of all (commutative) monoids lacks a Beth companion. A series

of tools to describe the Beth companion of a concrete class of algebras is also exhibited, drawing

connections with absolutely closed, injective, and saturated algebras.

The appeal of Beth companions depends largely on whether the structure theory of a class is

improved by moving to its Beth companion. We show that this is indeed the case by proving

that, under minimal assumptions, every Beth companion of a relatively congruence distributive
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quasivariety whose class of relatively finitely subdirectly irreducible members is closed under

nontrivial subalgebras is an arithmetical variety with the congruence extension property. This

theorem applies, for instance, to the quasivariety of reduced commutative rings of characteristic

zero (which lacks the properties given by the theorem) and its Beth companion, namely, the variety

of meadows of characteristic zero. As a corollary, we obtain that the Beth companion of a relatively

filtral quasivariety must be a discriminator variety.

A variety of examples, together with their Beth companions, are discussed (see Table 1). These

include both examples from classical algebra such as semigroups and monoids (both with and

without commutativity and cancellativity), Abelian ℓ-groups, torsion-free Abelian groups, and

reduced commutative rings, as well as examples with a logical motivation such as (bounded)

distributive lattices, Hilbert algebras, Heyting algebras, and MV-algebras.

Class Beth companion Location

universal classes with the strong epi-

morphism surjectivity property

themselves Thm. 11.9

relatively filtral quasivarieties discriminator varieties Cor. 12.11

monoids no Beth companion Thm. 14.1

semigroups no Beth companion Rem. 14.8

commutative monoids no Beth companion Thm. 14.1

commutative semigroups no Beth companion Rem. 14.8

cancellative commutative monoids Abelian groups Thm. 11.9

cancellative commutative semigroups Abelian groups Rem. 14.8

torsion-free Abelian groups Abelian groups with division Thm. 13.10

Abelian ℓ-groups Abelian ℓ-groups with division Thm. 13.16

reduced commutative rings of char-

acteristic zero

meadows of characteristic zero Exa. 12.12

distributive lattices relatively complemented distributive

lattices

Thm. 11.9

bounded distributive lattices Boolean algebras Thm. 11.9

Hilbert algebras implicative semilattices Thm. 11.9

pseudocomplemented distributive

lattices

Heyting algebras of depth ⩽ 2 Thm. 11.9

varieties generated by a linearly or-

dered Heyting algebra A

no Beth companion if 5 ⩽ |A| < ω

and V(A) otherwise

Thm. 14.17

MV-algebras MV-algebras with division Thm. 13.21

varieties generated by an MV-algebra

of the form  Ln

varieties generated by the expansion

of  Ln with a constant for 1
n

Thm. 13.27

Table 1. Some classes of algebras and their Beth companions.
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1. Formulas, compactness, and preservation theorems

Throughout this work, we will assume familiarity with the notions of an algebra and a

homomorphism from universal algebra (see, e.g., [11, 21]), with simple constructions such as

direct products or subalgebras, as well as with first order formulas and their interpretation in

mathematical structures (see, e.g., [35, 63]). In doing so, we will restrict our attention to

algebraic languages. Furthermore, classes of algebras K will be always assumed to be classes

of similar algebras, that is, algebras with a common language. Given a pair of algebras A

and B, we write A ⩽ B to indicate that A is a subalgebra of B. We denote the direct

product of a family {Ai : i ∈ I} of similar algebras by
∏

i∈I Ai and the projection maps by

pj :
∏

i∈I Ai → Aj for every j ∈ I. We also write A1 × · · · ×An for the product of a finite

family {A1, . . . ,An}.

By a formula we always mean a first order formula. Given a formula φ, we write φ(x1, . . . , xn)

to indicate that the free variables of φ are among x1, . . . , xn. We denote the conjunction,

disjunction, and implication of a pair of formulas φ and ψ by φ ⊓ ψ, φ ⊔ ψ, and φ → ψ,

respectively. Moreover, we denote the negation of a formula φ by ¬φ. When φ is an equation

t1 ≈ t2, we often write t1 ̸≈ t2 as a shorthand for ¬(t1 ≈ t2). Given an algebra A, a formula

φ(x1, . . . , xn), and a1, . . . , an ∈ A, we write A ⊨ φ(a1, . . . , an) to indicate that φ holds in A

of the elements a1, . . . , an. When A ⊨ φ(a1, . . . , an) for all a1, . . . , an ∈ A, we say that φ is

valid in A and write A ⊨ φ. Similarly, if Φ is a set of formulas, we write A ⊨ Φ, and say that

A is a model of Φ, to indicate that A ⊨ φ for each φ ∈ Φ. This notion extends to classes of

algebras K as follows: we say that a formula φ is valid in K and write K ⊨ φ when A ⊨ φ for

each A ∈ K. Similarly, we write K ⊨ Φ when K ⊨ φ for each φ ∈ Φ. We always allow two
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special formulas ⊤ and ⊥ without free variables and assume that ⊤ is valid in every algebra,

while ⊥ is not valid in any algebra.

A pair of formulas φ(x1, . . . , xn) and ψ(x1, . . . , xn) is said to be equivalent in a class of

algebras K when for all A ∈ K and a1, . . . , an ∈ A,

A ⊨ φ(a1, . . . , an) ⇐⇒ A ⊨ ψ(a1, . . . , an).

When φ and ψ are equivalent in every class of algebras, we simply say that they are equivalent.

A formula is said to be existential positive when it is of the form

∃x1, . . . , xnφ, (1)

where φ is built from equations, ⊤, and ⊥ using only ⊓ and ⊔. An existential positive formula

of the form in (1) is called a primitive positive formula (pp formula for short) when φ is a

finite conjunction of equations.1 Since existential quantifiers and conjunctions distribute over

disjunctions up to equivalence, every existential positive formula is equivalent to a disjunction

of pp formulas. Lastly, a formula is said to be universal when it is of the form ∀x1, . . . , xnφ,

where φ is a quantifier-free formula.

Let K be a class of algebras. A formula φ(x1, . . . , xn) is said to be preserved by

(i) homomorphisms in K when for every homomorphism h : A → B with A,B ∈ K and

a1, . . . , an ∈ A,

if A ⊨ φ(a1, . . . , an), then B ⊨ φ(h(a1), . . . , h(an));

(ii) direct products in K when for all {Ai : i ∈ I} ⊆ K and a1, . . . , an ∈
∏

i∈I Ai,

if Ai ⊨ φ(pi(a1), . . . , pi(an)) for each i ∈ I, then
∏
i∈I

Ai ⊨ φ(a1, . . . , an);

(iii) subalgebras in K when for all A ⩽ B ∈ K and a1, . . . , an ∈ A,

if B ⊨ φ(a1, . . . , an), then A ⊨ φ(a1, . . . , an).

A class of algebras K is said to be elementary when it can be axiomatized by a set of

formulas Φ, i.e., K is the class of models of Φ. We rely on the following preservation theorem

for elementary classes.

Theorem 1.1. Let K be an elementary class. A formula φ(x1, . . . , xn) is preserved by

(i) homomorphisms in K if and only if it is equivalent in K to an existential positive formula;

(ii) homomorphisms and direct products in K if it is a pp formula;

(iii) subalgebras in K if and only if it is equivalent in K to a universal formula.

Proof. (i): This fact is known as the homomorphism preservation Theorem and is due to  Loś,

Lyndon, and Tarski [96, 86, 102]. Since we have not been able to find this result relativized

to elementary classes explicitly stated in the literature, we provide a complete proof here.

The argument requires some basic notions from the model theory of structures in languages

containing both function and relation symbols that can be found in any standard book on

model theory such as [63].

1We admit the empty conjunction, which is defined to be ⊤.
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For every A ∈ K let RA be the n-ary relation on A defined by ⟨a1, . . . , an⟩ ∈ RA if

and only if A ⊨ φ(a1, . . . , an). We denote by A∗ the structure obtained by equipping the

algebra A with RA. Then K∗ = {A∗ : A ∈ K} is an elementary class in the language of

K expanded with an n-ary relation symbol R. Indeed, since K is an elementary class, an

axiomatization of K∗ is obtained by adding to the axiomatization of K the first order formula

R(x1, . . . , xn) ↔ φ(x1, . . . , xn). Since K∗ is elementary, [26, Thm. 6.2(3)] yields that the

following conditions are equivalent:

(a) for every homomorphism h : A → B between members of K and a1, . . . , an ∈ A we have

that ⟨a1, . . . , an⟩ ∈ RA implies ⟨h(a1), . . . , h(an)⟩ ∈ RB;

(b) there exists an existential positive formula ψ in the language of K such that for all A ∈ K

and a1, . . . , an ∈ A we have ⟨a1, . . . , an⟩ ∈ RA if and only if A ⊨ ψ(a1, . . . , an).

It follows immediately from the definition of RA and RB that condition (a) is equivalent to φ

being preserved by homomorphisms in K, while condition (b) says that φ is equivalent to an

existential positive formula in K. We then conclude that φ is preserved by homomorphisms

in K if and only if it is equivalent in K to an existential positive formula, as desired.

(ii): Suppose that φ is a pp formula. As every pp formula is an existential positive formula,

(i) implies that φ is preserved by homomorphisms in K. We show that φ is also preserved by

direct products as well. Since φ(x1, . . . , xn) is a pp formula, it is of the form

∃z1, . . . , zmψ(x1, . . . , xn, z1, . . . , zm),

where ψ is a finite conjunction of equations. Consider {Ai : i ∈ I} ⊆ K and a1, . . . , an ∈∏
i∈I Ai such that Ai ⊨ φ(pi(a1), . . . , pi(an)) for each i ∈ I. Our goal is to show that∏
i∈I Ai ⊨ φ(a1, . . . , an). For every i ∈ I, from Ai ⊨ φ(pi(a1), . . . , pi(an)) it follows that there

exists ⟨bi1, . . . , bim⟩ ∈ Am
i such that

Ai ⊨ ψ(pi(a1), . . . , pi(an), bi1, . . . , b
i
m).

It is straightforward to verify that conjunctions of equations and ⊤ are preserved by direct

products. Therefore, letting b1 = ⟨bi1 : i ∈ I⟩, . . . , bm = ⟨bim : i ∈ I⟩, we obtain∏
i∈I

Ai ⊨ ψ(a1, . . . , an, b1, . . . , bm).

Hence, we conclude that
∏

i∈I Ai ⊨ φ(a1, . . . , an).

(iii): See, e.g., [63, Thm. 6.5.4] and the subsequent paragraph. ⊠

We recall the Compactness Theorem of first order logic (see, e.g., [63, Thm. 6.1.1]).

Compactness Theorem 1.2. A set of formulas Φ has a model if every finite subset of Φ

has a model.

For the present purpose, it is convenient to phrase the Compactness Theorem in terms of

infinite conjunctions and disjunctions as well. To this end, we denote the conjunction and

the disjunction of a (possibly infinite) set of formulas Φ, respectively, by
l

Φ and
⊔

Φ.
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When Φ = ∅, we assume that
d

Φ = ⊤ and
⊔

Φ = ⊥. Given a pair of sets of formulas Φ and

Ψ with free variables among ⟨xi : i ∈ I⟩, an algebra A, and a sequence a⃗ = ⟨ai : i ∈ I⟩ of

elements of A, we write

A ⊨
(l

Φ →
⊔

Ψ
)

(⃗a)

to indicate that if A ⊨ φ(⃗a) for each φ ∈ Φ, there exists ψ ∈ Ψ such that A ⊨ ψ(⃗a). When

the above display holds for every a⃗, we write A ⊨
d

Φ →
⊔

Ψ. Similarly, given K a class of

algebras, we write K ⊨
d

Φ →
⊔

Ψ to indicate that A ⊨
d

Φ →
⊔

Ψ for each A ∈ K.

A standard argument shows that the Compactness Theorem 1.2 is equivalent to the

following.

Compactness Theorem 1.3. Let K be an elementary class. For each pair of sets of formulas

Φ and Ψ,

if K ⊨
l

Φ →
⊔

Ψ, then K ⊨
l

Φ′ →
⊔

Ψ′ for some finite Φ′ ⊆ Φ and Ψ′ ⊆ Ψ.

We will make use of the following version of the Compactness Theorem for pp formulas.

Corollary 1.4. Let K be an elementary class closed under direct products. For each pair of

sets of pp formulas Φ and Ψ with Ψ ̸= ∅,

if K ⊨
l

Φ →
⊔

Ψ, then K ⊨
l

Φ′ → ψ for some finite Φ′ ⊆ Φ and ψ ∈ Ψ.

Proof. Suppose that K ⊨
d

Φ →
⊔

Ψ. By the Compactness Theorem 1.3 there exist finite

Φ′ ⊆ Φ and Ψ′ ⊆ Ψ such that

K ⊨
l

Φ′ →
⊔

Ψ′. (2)

As Ψ ̸= ∅, we may assume that Ψ′ ̸= ∅. Then consider an enumeration Ψ′ = {ψ1, . . . , ψn}.

To conclude the proof, it suffices to show that K ⊨
d

Φ′ → ψi for some i ⩽ n. Suppose

the contrary, with a view to contradiction. Then let x1, . . . , xm be the free variables ofd
Φ′ →

⊔
Ψ′. For each i ⩽ n there exist Ai ∈ K and ai1, . . . , a

i
m ∈ Ai such that

Ai ⊨
l

Φ′(ai1, . . . , a
i
m) and Ai ⊭ ψi(a

i
1, . . . , a

i
m). (3)

Then consider the elements a1 = ⟨ai1 : i ⩽ n⟩, . . . , am = ⟨aim : i ⩽ n⟩ of A1 × · · · × An. From

the left hand side of the above display, the assumption that Φ′ is a set of pp formulas, and

Theorem 1.1(ii) it follows that

A1 × · · · ×An ⊨
l

Φ′(a1, . . . , am).

As A1, . . . ,An ∈ K and K is closed under direct products by assumption, we obtain A1 ×
· · · ×An ∈ K. Together with (2) and the above display, this yields

A1 × · · · ×An ⊨ ψi(a1, . . . , am)

for some i ⩽ n. From the above display, Theorem 1.1(ii) and the assumption that ψi is a pp

formula it follows that Ai ⊨ ψi(pi(a1), . . . , pi(am)). Together with the definition of a1, . . . , am,

this amounts to Ai ⊨ ψi(a
i
1, . . . , a

i
m), a contradiction with the right hand side of (3). ⊠

The following may be regarded as a converse to Theorem 1.1(ii) under some additional

assumptions.
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Theorem 1.5. Let K be an elementary class closed under direct products and φ a formula

that is preserved by homomorphisms and direct products in K. Then φ is equivalent in K to a

pp formula.

Proof. As φ is preserved by homomorphisms in K, Theorem 1.1(i) yields an existential

positive formula ψ that is equivalent in K to φ. Since ψ is an existential positive formula,

it is equivalent to a finite disjunction ψ1 ⊔ · · · ⊔ ψm of pp formulas ψi. It is then sufficient

to show that there exists i ⩽ m such that K ⊨ ψ ↔ ψi. Since K ⊨ ψ → (ψ1 ⊔ · · · ⊔ ψm),

by Corollary 1.4 there exists i ⩽ m such that K ⊨ ψ → ψi. Because ψ is equivalent to

ψ1 ⊔ · · · ⊔ ψm, we have K ⊨ ψi → ψ. Thus, the formula ψ, and hence also φ, is equivalent in

K to ψi, which is a pp formula. ⊠

We close this introductory section by recalling a fundamental theorem on ultraproducts

known as  Loś’ Theorem (see, e.g., [21, Thm. V.2.9]). To this end, given a family of algebras

{Ai : i ∈ I}, a formula φ(x1, . . . , xn), and a1, . . . , an ∈
∏

i∈I Ai, let

Jφ(a1, . . . , an)K = {i ∈ I : Ai ⊨ φ(pi(a1), . . . , pi(an))}.

 Loś’ Theorem 1.6. Let {Ai : i ∈ I} be a family of algebras and U an ultrafilter on I. For

every formula φ(x1, . . . , xn) and a1, . . . , an ∈
∏

i∈I Ai we have∏
i∈I

Ai/U ⊨ φ(a1/U, . . . , an/U) ⇐⇒ Jφ(a1, . . . , an)K ∈ U.

We denote by Pu the class operator of closure under ultraproducts. As a consequence of

 Loś’ Theorem, every elementary class is closed under Pu.

2. Universal algebra

This section reviews the main tools of general algebraic nature that will be employed in this

monograph. The reader need not read it in its entirety before proceeding with the subsequent

sections and can come back to it each time they encounter a new notion.

We denote the class operators of closure under isomorphic copies, subalgebras, homomorphic

images, direct products, and ultraproducts by I,S,H,P, and Pu, respectively. A class of

algebras is said to be:

(i) a variety when it is closed under H,S, and P;

(ii) a quasivariety when it is closed under I,S,P, and Pu;

(iii) a universal class when it is closed under I,S, and Pu.

While every variety is a quasivariety and every quasivariety is a universal class, the converses

are not true in general. We call proper the quasivarieties that are not varieties and the

universal classes that are not quasivarieties. Examples of a proper quasivariety and a proper

universal class are the classes of cancellative commutative monoids (Example 8.8) and of

fields (Example 3.16), respectively.

The next theorem provides an alternative characterization of the above mentioned classes

in terms of axiomatizability by certain types of formulas (see, e.g., [21, Thms. II.11.9 &
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V.2.25 & V.2.20]). We recall that a formula is called a quasiequation when it is of the form
l

Φ → φ,

where Φ∪{φ} is a finite set of equations. When Φ = ∅, the above quasiequation is equivalent

to the equation φ. Consequently, every equation is equivalent to a quasiequation.

Theorem 2.1. The following conditions hold for a class of algebras K:

(i) K is a variety if and only if it can be axiomatized by a set of equations;

(ii) K is a quasivariety if and only if it can be axiomatized by a set of quasiequations;

(iii) K is a universal class if and only if it can be axiomatized by a set of universal formulas.

We denote the least variety, the least quasivariety, and the least universal class containing

a class of algebras K by V(K), Q(K), and U(K), respectively. A variety (resp. quasivariety) K

is finitely generated when K = V(M) (resp. K = Q(M)) for a finite set M of finite algebras.

The following characterizes V(K), Q(K), and U(K) in terms of the class operators (see, e.g.,

[21, Thms. II.9.5 & V.2.25 & V.2.20]).

Theorem 2.2. For every class of algebras K,

V(K) = HSP(K), Q(K) = ISPPu(K), and U(K) = ISPu(K).

The following is a straightforward consequence of Theorem 2.1.

Corollary 2.3. The following conditions hold for a class of algebras K:

(i) V(K) is the class of models of all the equations valid in K;

(ii) Q(K) is the class of models of all the quasiequations valid in K;

(iii) U(K) is the class of models of all the universal formulas valid in K.

We will make use of the following closure property of universal classes (see, e.g., [35,

Thm. 3.2.3]).

Proposition 2.4. Universal classes are closed under the formation of unions of chains of

algebras.

As quasivarieties need not be closed under H, the following concept is often useful. Let K

be a quasivariety and A and algebra (not necessarily in K). A congruence θ of A is said to

be a K-congruence when A/θ ∈ K. Owing to the fact that K is closed under I and S, the

Homomorphism Theorem [21, Thm. II.6.12] yields that the kernel

Ker(h) = {⟨a, b⟩ ∈ A× A : h(a) = h(b)}

of every homomorphism h : A → B with B ∈ K is a K-congruence of A such that A/Ker(h) ∼=
h[A], where h[A] denotes the subalgebra of B with universe h[A]. When ordered under the

inclusion relation, the set of K-congruences of A forms an algebraic lattice ConK(A) in which

meets are intersections (see, e.g., [58, Prop. 1.4.7 & Cor. 1.4.11]). Given X ⊆ A × A, we

denote the least congruence of A containing X by CgA(X) and the least K-congruence of A

containing X by CgAK (X). We will rely on the following observation.
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Proposition 2.5. A quasivariety K is a variety if and only if Con(A) = ConK(A) for every

A ∈ K.

Proof. First, suppose that K is a variety. If A ∈ K and θ ∈ Con(A), then A/θ ∈ H(A) ⊆ K.

Therefore, Con(A) = ConK(A) for every A ∈ K. Assume now that Con(A) = ConK(A) for

every A ∈ K. Since K is a quasivariety, it suffices to prove that K is closed under homomorphic

images. Consider B ∈ H(K). Then there exists a surjective homomorphism h : A → B

with A ∈ K. Since Ker(h) ∈ Con(A), the assumption yields Ker(h) ∈ ConK(A). Thus,

A/Ker(h) ∈ K. As B ∼= A/Ker(h) and K is closed under I, it follows that B ∈ K. ⊠

The following gives a necessary and sufficient condition for a homomorphism to factor

through a quotient (see, e.g., [59, p. 62]).

Proposition 2.6. Let h : A → B be a homomorphism, θ ∈ Con(A), and f : A → A/θ

the canonical surjection. Then θ ⊆ Ker(h) if and only if there exists a homomorphism

g : A/θ → B such that g ◦ f = h.

A B

A/θ

h

f
g

An algebra A is a subdirect product of a family {Bi : i ∈ I} when A ⩽
∏

i∈I Bi and

for every i ∈ I the projection map pi : A → Bi is surjective. Similarly, an embedding

h : A →
∏

i∈I Bi is called subdirect when h[A] ⩽
∏

i∈I Bi is a subdirect product. The next

result simplifies the task of constructing subdirect embeddings (see, e.g., [21, Lem. II.8.2]).

Proposition 2.7. Let A be an algebra and X ⊆ Con(A). Then the map

h : A/
⋂

X →
∏
θ∈X

A/θ

defined by the rule h(a/
⋂
X) = ⟨a/θ : θ ∈ X⟩ is a subdirect embedding.

Notably, every congruence can be viewed as a subdirect product.

Proposition 2.8. Let K be a quasivariety and A ∈ K. Every congruence θ of A is the

universe of an algebra θ∗ ∈ K such that θ∗ ⩽ A×A is a subdirect product.

Proof. The fact that θ is the universe of a subalgebra θ∗ of A×A is an immediate consequence

of the definition of a congruence of A. As A ∈ K and K is closed under subalgebras and

direct products (because it is a quasivariety), we obtain θ∗ ∈ K. To conclude that θ∗ ⩽ A×A

is a subdirect product, it suffices to show that the projection maps p1, p2 : θ∗ → A are

surjective. Consider a ∈ A. As θ is a reflexive relation on A, we have ⟨a, a⟩ ∈ θ. Consequently,

p1(⟨a, a⟩) = p2(⟨a, a⟩) = a. ⊠

Let K be a quasivariety. An algebra A ∈ K is said to be subdirectly irreducible relative

to K when for every subdirect embedding h : A →
∏

i∈I Bi with {Bi : i ∈ I} ⊆ K there

exists i ∈ I such that pi ◦ h : A → Bi is an isomorphism. In case this happens whenever
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the index set I is finite, we say that A is finitely subdirectly irreducible relative to K.2 The

classes of algebras that are subdirectly irreducible relatively to K and finitely subdirectly

irreducible relative to K will be denoted by Krsi and Krfsi, respectively. When K is a variety,

the requirement that {Bi : i ∈ I} is a subset of K in the above definitions can be harmlessly

dropped and we simply say that A is subdirectly irreducible or finitely subdirectly irreducible

(i.e., we drop the “relative to K”). In this case, we also write Ksi and Kfsi instead of Krsi and

Krfsi.

The importance of subdirect embeddings and of algebras that are subdirectly irreducible

relative to K derives from the following representation theorem (see, e.g., [58, Thm. 3.1.1]).

Subdirect Decomposition Theorem 2.9. Let K be a quasivariety. For every A ∈ K there

exists a subdirect embedding f : A →
∏

i∈I Bi with {Bi : i ∈ I} ⊆ Krsi.

For instance, an Abelian group is subdirectly irreducible precisely when it is either cyclic

of prime-power order or quasicyclic (see, e.g., [11, Thm. 3.29]). Therefore, every Abelian

group can be represented as a subdirect product of Abelian groups of this form.

Notably, algebras that are (finitely) subdirectly irreducible relative to K can be recognized

by looking at the structure of their lattices of K-congruences. More precisely, we recall that

an element a of a lattice A is said to be:

(i) completely meet irreducible when a ∈ X for every X ⊆ A such that a =
∧
X;

(ii) meet irreducible when a ∈ X for every finite X ⊆ A such that a =
∧
X.

Notice that every completely meet irreducible element is meet irreducible and that the

maximum of a lattice is never meet irreducible because it coincides with
∧
∅. Given a

quasivariety K and A ∈ K, let

Irr∞K (A) = the set of completely meet irreducible elements of ConK(A);

IrrK(A) = the set of meet irreducible elements of ConK(A).

Furthermore, we denote the identity relation on A by idA. The following is a consequence of

[58, Cor. 1.4.8] and the Correspondence Theorem [21, Thm. II.6.20].

Proposition 2.10. Let A be a member of a quasivariety K. For every θ ∈ Con(A) we have

A/θ ∈ Krsi if and only if θ ∈ Irr∞K (A);

A/θ ∈ Krfsi if and only if θ ∈ IrrK(A).

Therefore, A ∈ Krsi (resp. A ∈ Krfsi) if and only if idA ∈ Irr∞K (A) (resp. idA ∈ IrrK(A)).

As a consequence, a member A of a quasivariety K is relatively subdirectly irreducible

precisely when it has a least nonidentity K-congruence, called the monolith of A. When it

exists, the monolith of A is always the K-congruence of A generated by a pair of distinct

elements a, b ∈ A, which we denote by CgAK (a, b).

2We adopt the convention that the direct product of an empty family of algebras is the trivial algebra in

the language under consideration. Consequently, we do not regard the trivial algebra as relatively (finitely)

subdirectly irreducible.
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Given two binary relations R1 and R2 on a set A, we let

R1 ◦R2 = {⟨a, b⟩ ∈ A× A : there exists c ∈ A s.t. ⟨a, c⟩ ∈ R1 and ⟨c, b⟩ ∈ R2}.

A variety K is said to be congruence permutable when for all A ∈ K and θ, ϕ ∈ Con(A) we

have θ ◦ ϕ = ϕ ◦ θ. A quasivariety K is said to be relatively congruence distributive when

ConK(A) is a distributive lattice for every A ∈ K. If K is a variety, we simply say that K is

congruence distributive. Notably, every variety whose members have a group (resp. lattice)

structure is congruence permutable (resp. distributive) (see, e.g., [21, p. 79]). A variety that

is both congruence distributive and congruence permutable is called arithmetical.

Remark 2.11. Contrarily to the case of congruence distributivity, congruence permutability is

usually understood as a property of varieties only (as opposed to arbitrary quasivarieties).

The reason is that an algebra is congruence permutable if and only if θ ◦ ϕ is the join of θ

and ϕ in Con(A) for all θ, ϕ ∈ Con(A). However, the sole quasivarieties K such that θ ◦ ϕ is

the join of θ and ϕ in ConK(A) for all A ∈ K and θ, ϕ ∈ ConK(A) are those that are varieties

(see [28]). ⊠

The following is a generalization of Jónsson’s Theorem to the setting of finitely subdirectly

irreducible algebras, which can be obtained as a straightforward consequence of [40, Thm. 1.7].

Jónsson’s Theorem 2.12. Let K be a class of algebras such that V(K) is congruence

distributive. Then V(K)fsi ⊆ HSPu(K).

We will also utilize the following analogous statement for quasivarieties (see [40, Thm. 1.5]).

Theorem 2.13. Let K be a class of algebras. Then Q(K)rfsi ⊆ ISPu(K).

When the class K in the above result is a finite set of finite algebras, the class operator Pu
becomes superfluous because of the following observation (see, e.g., [11, Thm. 5.6(2)]).

Proposition 2.14. If K is a finite set of finite algebras, then Pu(K) ⊆ I(K).

Lastly, given an algebra A and a set X ⊆ A, we denote the least subuniverse of A

containing X by SgA(X). When SgA(X) ̸= ∅, the subalgebra of A with universe SgA(X)

will also be denoted by SgA(X). When X = {a1, . . . , an} is finite, we write SgA(a1, . . . , an)

in place of SgA({a1, . . . , an}). If A = SgA(X) for some finite X ⊆ A, we say that A is finitely

generated. If every finitely generated subalgebra of A is finite, we call A locally finite. A class

of algebras is locally finite when its members are. We denote the class of finitely generated

members of a class of algebras K by Kfg.

The following is an immediate consequence of [21, Thm. V.2.14].

Proposition 2.15. Let K be a universal class. Then K = U(Kfg).

The Subdirect Decomposition Theorem 2.9 readily implies that K = Q(Krsi) for every

quasivariety K. It is well known that this result can be improved by restricting to the class

Kfg
rsi of finitely generated members of Krsi. As we were unable to find a reference in the

literature, we provide a proof.

Proposition 2.16. Let K be a quasivariety. Then K = Q(Kfg
rsi).
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Proof. From [58, Prop. 2.1.18] it follows that K = Q(Kfg), where Kfg is the class of the

finitely generated members of K. Then let A ∈ Kfg. By the Subdirect Decomposition

Theorem 2.9 there exists a subdirect embedding f : A →
∏

i∈I Ai, where Ai ∈ Krsi for every

i ∈ I. As f is a subdirect embedding, each Ai is a homomorphic image of A and, therefore,

finitely generated. So, Ai ∈ Kfg
rsi for every i ∈ I. Since f is an embedding into a direct

product of members of Kfg
rsi, we obtain A ∈ ISP(Kfg

rsi) ⊆ Q(Kfg
rsi). Thus, Kfg ⊆ Q(Kfg

rsi), and

hence Q(Kfg) ⊆ Q(Kfg
rsi). Together with K = Q(Kfg), this yields K ⊆ Q(Kfg

rsi). Since K is a

quasivariety containing Kfg
rsi, we conclude that K = Q(Kfg

rsi). ⊠

Let K be a quasivariety. For every pair of algebras A and B, θ ∈ ConK(A), and ϕ ∈
ConK(B), the relation

θ × ϕ = {⟨⟨a1, b1⟩, ⟨a2, b2⟩⟩ ∈ (A×B)2 : ⟨a1, a2⟩ ∈ θ and ⟨b1, b2⟩ ∈ ϕ}

is a K-congruence of the direct product A × B. Given a pair of algebras A ⩽ B and

θ ∈ ConK(B), we write θ↾A as a shorthand for θ∩ (A×A). Notice that θ↾A is a K-congruence

of A. The next result is an effortless generalization to quasivarieties of [73, Thm. 1.2.20].

Theorem 2.17. A quasivariety K is relatively congruence distributive if and only if for every

subdirect product A ⩽ B×C with B,C ∈ K and every θ ∈ ConK(A) there exist ϕ ∈ ConK(B)

and η ∈ ConK(C) such that θ = (ϕ× η)↾A.

As a consequence, we deduce the following.

Corollary 2.18. Let K be a relatively congruence distributive quasivariety, A an algebra,

and θ ∈ ConK(A) such that A/θ is either trivial or a member of Krfsi. Then for every B ∈ K

such that A ⩽ B ×B is a subdirect product there exists ϕ ∈ ConK(B) with

θ ∈ {(ϕ×B2)↾A, (B
2 × ϕ)↾A}.

Proof. Consider B ∈ K such that A ⩽ B ×B is a subdirect product. We have two cases:

either A/θ is trivial or it belongs to Krfsi. First, suppose that A/θ is trivial. Then θ = A×A.

As A ⊆ B ×B by assumption, we obtain

θ = A× A = (B2 ×B2)↾A.

Since B2 is a K-congruence of B (because K contains all the trivial algebras in the appropriate

language), we obtain B2 ∈ ConK(B). Hence, we are done taking ϕ = B2.

Next we consider the case where A/θ ∈ Krfsi. As A ⩽ B ×B is a subdirect product and

K is relatively congruence distributive by assumption, we can apply Theorem 2.17, obtaining

some ϕ1, ϕ2 ∈ ConK(B) such that θ = (ϕ1×ϕ2)↾A. Observe that ϕ1×ϕ2 = (ϕ1×B2)∩(B2×ϕ2).

Therefore,

θ = (ϕ1 × ϕ2)↾A = ((ϕ1 ×B2) ∩ (B2 × ϕ2))↾A = (ϕ1 ×B2)↾A ∩ (B2 × ϕ2)↾A. (4)

Observe that ϕ1 × B2, B2 × ϕ2 ∈ ConK(B ×B) because ϕ1, ϕ2 ∈ ConK(B). Together with

A ⩽ B ×B, this yields

(ϕ1 ×B2)↾A, (B
2 × ϕ2)↾A ∈ ConK(A). (5)
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Lastly, recall that A/θ ∈ Krfsi by assumption. Then θ ∈ IrrK(A) by Proposition 2.10.

Therefore, from (4) and (5) it follows that θ ∈ {(ϕ1 × B2)↾A, (B
2 × ϕ2)↾A}. Since ϕ1, ϕ2 ∈

ConK(B), we are done. ⊠

Let K be a class of algebras and X a nonempty set of variables. The set of all terms built

over variables in X can be made into an algebra T (X) called the term algebra over X. The

binary relation θK on T (X) defined by ⟨t, s⟩ ∈ θK if and only if K ⊨ t ≈ s is a congruence

of T (X). We call the quotient FK(X) = T (X)/θK the K-free algebra over X. Free algebras

have the following universal mapping property: for every map f : X → A with A ∈ K there

exists a unique homomorphism h : FK(X) → A such that h(x/θK) = f(x) for every x ∈ X.

To simplify the notation, we will often denote an element t/θK of FK(X) simply by t. The

following states that quasivarieties contain all free algebras (see, e.g., [21, Thm. II.10.12]).

Theorem 2.19. Let K be a quasivariety and X a nonempty set. Then FK(X) ∈ K.

A member A of quasivariety K is called finitely presented when there exist a finite set of

variables X and a finite Y ⊆ T (X) × T (X) such that A ∼= T (X)/Cg
T (X)
K (Y ).

We call an algebra in a language L an L-algebra. When L and L′ are two languages

such that L ⊆ L′ we say that L′ is an expansion of L. If L′ is an expansion of L, then

for every L′-algebra A, we can consider its L-reduct A↾L obtained from A by forgetting

the interpretations of all function symbols that are not in L. Given a class K of L′-algebras,

we denote the class of the L-reducts of members of K by K↾L and we call the members of

S(K↾L) the L-subreducts of K. For instance, the monoid subreducts of Abelian groups are

precisely the cancellative commutative monoids (see, e.g., [84, pp. 39–40]). We will often

denote the language of a given class of algebras K by LK, and we will refer to the terms of

LK simply as the terms of K.

Particular cases of language expansions are those obtained by adding to the language

names for the elements of a given algebra. More precisely, given an L-algebra A, we consider

the language LA obtained by adding to L a set of new constants {ca : a ∈ A} that is in

bijection with the elements of A. Given a function h : A→ B between the universes of a pair

of L-algebras A and B, we denote by Bh[A] the LA-algebra whose L-reduct is B and in

which each constant ca is interpreted as h(a). In particular, we denote by AA the expansion

of A to an LA-algebra induced by the identity map on A. We define the diagram diag(A)

of an L-algebra A to be the set of all variable-free LA-formulas that are equations and

negated equations valid in AA. The following lemma connects the validity of diagrams with

the existence of embeddings (see, e.g., [35, Prop. 2.1.8]).

Diagram Lemma 2.20. Let A and B be L-algebras and h : A → B a function. Then

h : A → B is an embedding if and only if Bh[A] ⊨ diag(A).

3. Implicit operations

An n-ary partial function on a set X is a function f : Y → X for some Y ⊆ Xn. In this

case, the set Y will be called the domain of f and will be denoted by dom(f). This notion

can be extended to classes of algebras as follows. An n-ary partial function on a class of
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algebras K is a sequence ⟨fA : A ∈ K⟩, where fA is an n-ary partial function on A for each

A ∈ K. By a partial function on K we mean an n-ary partial function on K for some n ∈ N.

When f is a partial function on K and A ∈ K, we denote the A-component of f by fA.

Example 3.1 (Monoids). The operation of “taking inverses” can be viewed as a partial

function on the variety of monoids Mon. More precisely, recall that the inverse of an element

a of a monoid A = ⟨A; ·, 1⟩ is unique when it exists, in which case it will be denoted by a−1.

Then let fA be the unary partial function on A with domain

dom(fA) = {a ∈ A : a has an inverse in A},

defined for each a ∈ dom(fA) as fA(a) = a−1. The sequence ⟨fA : A ∈ Mon⟩ is a unary

partial function on Mon. ⊠

Definition 3.2. A formula φ(x1, . . . , xn, y) with n ⩾ 1 in the language of a class of algebras

K is said to be functional in K when for all A ∈ K and a1, . . . , an ∈ A there exists at most

one b ∈ A such that A ⊨ φ(a1, . . . , an, b). When K = {A}, we often say that φ is functional

in A.

In other words, φ is functional in a class of algebras K when

K ⊨ (φ(x1, . . . , xn, y) ⊓ φ(x1, . . . , xn, z)) → y ≈ z.

In this case, φ induces an n-ary partial function φA on each A ∈ K with domain

dom(φA) = {⟨a1, . . . , an⟩ ∈ An : there exists b ∈ A such that A ⊨ φ(a1, . . . , an, b)},

defined for all ⟨a1, . . . , an⟩ ∈ dom(φA) as φA(a1, . . . , an) = b, where b is the unique element

of A such that A ⊨ φ(a1, . . . , an, b). Consequently,

φK = ⟨φA : A ∈ K⟩

is an n-ary partial function on K.

Definition 3.3. A partial function f on a class of algebras K is said to be

(i) defined by a formula φ when φ is functional in K and f = φK;

(ii) implicit when it is defined by some formula.

We remark that the arity of implicit partial functions is always positive because the

definition of a functional formula φ = φ(x1, . . . , xn, y) requires n to be positive.

Example 3.4 (Monoids). We will prove that the partial function of “taking inverses” in

monoids introduced in Example 3.1 is defined by the formula

φ(x, y) = (x · y ≈ 1) ⊓ (y · x ≈ 1).

First, observe that for each monoid A and a, b ∈ A we have

A ⊨ φ(a, b) ⇐⇒ a · b = 1 = b · a ⇐⇒ b = a−1.

As a consequence, for all a, b, c ∈ A such that A ⊨ φ(a, b) ⊓ φ(a, c) we have b = a−1 = c,

whence φ is functional in Mon. Together with the above display, this shows that φ defines

the partial function of “taking inverses” in monoids which, therefore, is implicit. ⊠
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Definition 3.5. An n-ary partial function f on a class of algebras K is said to be

(i) an operation of K when for each homomorphism h : A → B with A,B ∈ K and

⟨a1, . . . , an⟩ ∈ dom(fA) we have ⟨h(a1), . . . , h(an)⟩ ∈ dom(fB) and

h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an));

(ii) an implicit operation of K when it is both implicit and an operation of K.

We denote the class of implicit operations of K by imp(K). When K = {A}, we often write

imp(A) instead of imp(K).

Partial functions on a class K of algebras are defined as sequences ⟨fA : A ∈ K⟩ of partial

functions indexed by K. Consequently, when K is a proper class, so is each of the partial

functions on K. Nevertheless, since implicit partial functions can be identified with their

defining formulas, we will always treat imp(K) as a set.

Example 3.6 (Monoids). We will prove the following.

Theorem 3.7. Taking inverses is a unary implicit operation of the variety of monoids which,

moreover, can be defined by the conjunction of equations

φ = (x · y ≈ 1) ⊓ (y · x ≈ 1).

Proof. Recall from Example 3.4 that the partial function f on the variety of monoids of

“taking inverses” is implicit and defined by φ. We will show that f is also an operation.

To this end, consider a homomorphism h : A → B of monoids and a ∈ dom(fA). Then

fA(a) = a−1. Since monoid homomorphisms preserve inverses, we obtain

h(fA(a)) = h(a−1) = h(a)−1.

Consequently, h(a) has an inverse, whence h(a) ∈ dom(fB) and fB(h(a)) = h(a)−1. Together

with the above display, this yields h(fA(a)) = fB(h(a)). ⊠

Example 3.8 (Term functions). Let K be a class of algebras. Every term of K can be viewed

as an implicit operation, as we proceed to illustrate. Let t(x1, . . . , xn) be a term. For each

A ∈ K, evaluating t on tuples of elements of A induces a function tA : An → A. Then the

sequence tK = ⟨tA : A ∈ K⟩ is an n-ary implicit operation of K defined by the equation

t(x1, . . . , xn) ≈ y. We call tK a term function of K. These implicit operations are always

“total”, in the sense that each tA is a total function on A. ⊠

In elementary classes, implicit operations admit the following description.

Theorem 3.9. Let f be a partial function on an elementary class K. Then f is an implicit

operation of K if and only if it is defined by an existential positive formula.

Proof. To prove the implication from left to right, suppose that f is an implicit operation

on K. Then there exists a formula φ(x1, . . . , xn, y) that defines f . We will prove that φ

is preserved by homomorphisms in K. To this end, consider a homomorphism h : A → B

with A,B ∈ K and a1, . . . , an, b ∈ A such that A ⊨ φ(a1, . . . , an, b). As φ defines f , from

A ⊨ φ(a1, . . . , an, b) it follows that ⟨a1, . . . , an⟩ ∈ dom(fA) and fA(a1, . . . , an) = b. Together
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with the assumption that f is an operation of K, this yields ⟨h(a1), . . . , h(an)⟩ ∈ dom(fB)

and

h(b) = h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)).

Since φ defines f , we conclude that B ⊨ φ(h(a1), . . . , h(an), h(b)). Hence, φ is preserved by

homomorphisms in K. Therefore, we can apply Theorem 1.1(i), obtaining that φ is equivalent

to an existential positive formula ψ in K. As φ defines f , so does ψ. Thus, we conclude that

f is defined by an existential positive formula.

Then we proceed to prove the implication from right to left. Suppose that f is defined

by an existential positive formula φ(x1, . . . , xn, y). To conclude that f is an implicit op-

eration of K, it suffices to show that it is an operation of K. Consider a homomorphism

h : A → B with A,B ∈ K and a1, . . . , an ∈ A such that ⟨a1, . . . , an⟩ ∈ dom(fA). As φ de-

fines f , we have A ⊨ φ(a1, . . . , an, f
A(a1, . . . , an)). Since φ is an existential positive formula,

we can apply Theorem 1.1(i), obtaining B ⊨ φ(h(a1), . . . , h(an), h(fA(a1, . . . , an))). There-

fore, ⟨h(a1), . . . , h(an)⟩ ∈ dom(fB) and h(fA(a1, . . . , an)) = fB(h(a1), . . . , h(an)) because φ

defines f . Hence, we conclude that f is an operation of K. ⊠

Let f, f1, . . . , fn be m-ary partial functions on a set X. We write f = f1 ∪ · · · ∪ fn to

indicate that f is the union of f1, . . . , fn when they are viewed as subsets of Xm ×X. This

condition is equivalent to the requirements that dom(f) = dom(f1) ∪ · · · ∪ dom(fn) and that

fi(x) = f(x) for all i and x ∈ dom(fi). As a consequence of Theorem 3.9, we obtain the

following.

Corollary 3.10. Let f be an implicit operation of an elementary class K. Then there exist

some implicit operations f1, . . . , fn of K defined by pp formulas such that for each A ∈ K,

fA = fA
1 ∪ · · · ∪ fA

n .

Proof. As K is an elementary class, we can apply Theorem 3.9, obtaining that f is defined

by an existential positive formula φ. We may assume that φ = φ1 ⊔ · · · ⊔ φn for some pp

formulas φ1, . . . , φn. Since φ defines f , it is functional in K. Together with φ = φ1 ⊔ · · · ⊔φn,

this implies that each φi is functional in K and, therefore, defines a partial function fi on K.

As φi is a pp formula, from Theorem 3.9 it follows that fi is an implicit operation of K. Now,

recall that φ = φ1 ⊔ · · · ⊔ φn defines f and φi defines fi for each i ⩽ n. Thus, we conclude

that fA = fA
1 ∪ · · · ∪ fA

n for each A ∈ K. ⊠

In view of Corollary 3.10, implicit operations of elementary classes are obtained by glu-

ing together implicit operations defined by pp formulas. This is the reason why the most

fundamental implicit operations in mathematics are defined by pp formulas (as opposed to

arbitrary existential positive formulas), as shown by the forthcoming examples. We denote

by imppp(K) the set of implicit operations of a given class K that are defined by pp formulas

and, when K = {A}, we often write imppp(A) instead of imppp(K).

Corollary 3.11. Let K be a class of algebras and φ an existential positive formula functional

in K. Then φ defines an implicit operation of Q(K).
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Proof. Suppose that φ(x⃗, y) is an existential positive formula, where x⃗ is a finite sequence of

variables. Since φ is existential positive, it is equivalent to a formula of the form

m⊔
i=1

∃z⃗ψi(x⃗, y, z⃗ ),

where each ψi(x⃗, y, z⃗) is a finite conjunction of equations. We rely on the following observation.

Claim 3.12. The formula φ is functional in a class of algebras M if and only if for all

i, j ⩽ m we have

M ⊨ (ψi(x⃗, y, z⃗ ) ⊓ ψj(x⃗, y
′, z⃗ ′)) → y ≈ y′,

where y′ is a fresh variable and z⃗ ′ a sequence of fresh variables of the same length as z⃗.

Proof of the Claim. The functionality of φ in M amounts to

M ⊨ (φ(x⃗, y) ⊓ ψ(x⃗, y′)) → y ≈ y′.

In turn, this amounts to

M ⊨

((
m⊔
i=1

∃z⃗ψi(x⃗, y, z⃗ )

)
⊓

(
m⊔
i=1

∃z⃗ ′ψi(x⃗, y
′, z⃗ ′)

))
→ y ≈ y′.

The latter amounts to

M ⊨

(
m⊔

i,j=1

∃z⃗, z⃗ ′(ψi(x⃗, y, z⃗ ) ⊓ ψj(x⃗, y
′, z⃗ ′))

)
→ y ≈ y′,

which is in turn equivalent to the condition displayed in the statement. ⊠

Now, suppose that φ is functional in K. By Claim 3.12 we obtain that for all i, j ⩽ m,

K ⊨ (ψi(x⃗, y, z⃗ ) ⊓ ψj(x⃗, y
′, z⃗ ′)) → y ≈ y′.

As the formula in the above display is a quasiequation for all i, j ⩽ m, Corollary 2.3(ii)

implies that it is also valid in Q(K). Together with Claim 3.12, this guarantees that φ is

functional in Q(K). ⊠

Given an n-ary partial function g and m-ary partial functions f1, . . . , fn on a class K, their

composition g(f1, . . . , fn) is the m-ary partial function on K such that dom(g(f1, . . . , fn)A) is⋂
i⩽m

dom(fA
i ) ∩ {⟨a1, . . . , am⟩ ∈ Am : ⟨fA

i (a1, . . . , am) : i ⩽ n⟩ ∈ dom(gA)}

for all A ∈ K and

g(f1, . . . , fn)A(a1, . . . , am) = gA(fA
1 (a1, . . . , am), . . . , fA

n (a1, . . . , am))

for all ⟨a1, . . . , am⟩ ∈ dom(g(f1, . . . , fn)A).

Proposition 3.13. Let K be a class of algebras. Then imp(K) and imppp(K) are closed under

composition.
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Proof. Consider g, f1, . . . , fn ∈ imp(K), where g is n-ary and each fi is m-ary. Let h =

g(f1, . . . , fn) be their composition, which is a partial m-ary function on K. To show that h is

an operation of K, consider a homomorphism k : A → B with A,B ∈ K and ⟨a1, . . . , am⟩ ∈
dom(hA). It follows from the definition of h that ⟨a1, . . . , am⟩ ∈ dom(fA

i ) for all i and

⟨fA
1 (a1, . . . , am), . . . , fA

n (a1, . . . , am)⟩ ∈ dom(gA). As g, f1, . . . , fn are operations of K, we

have that

⟨k(a1), . . . , k(am)⟩ ∈ dom(fB
i )

for all i and

⟨fB
1 (k(a1), . . . , k(am)), . . . , fB

n (k(a1), . . . , k(am))⟩
= ⟨k(fA

1 (a1, . . . , am)), . . . , k(fA
n (a1, . . . , am))⟩ ∈ dom(gB).

Then the definition of dom(hB) implies ⟨k(a1), . . . , k(am)⟩ ∈ dom(hB). Using again the fact

that g, f1, . . . , fn are operations of K yields

k(hA(a1, . . . , am)) = k(gA(fA
1 (a1, . . . , am), . . . , fA

n (a1, . . . , am)))

= gB(k(fA
1 (a1, . . . , am)), . . . , k(fA

n (a1, . . . , am)))

= gB(fB
1 (k(a1), . . . , k(am)), . . . , fB

n (k(a1), . . . , k(am)))

= hB(k(a1), . . . , k(am)).

Thus, h is an operation of K. We now prove that h is defined by a formula. Since g, f1, . . . , fn ∈
imp(K), there exist functional formulas ψ, φ1, . . . , φn that define g, f1, . . . , fn, respectively.

Therefore, for all A ∈ K, a1, . . . , am, b, b1, . . . , bn, c ∈ A, and i ⩽ n we have

⟨a1, . . . , am⟩ ∈ dom(fA
i ) and fA

i (a1, . . . , am) = b ⇐⇒ A ⊨ φi(a1, . . . , am, b) (6)

and

⟨b1, . . . , bn⟩ ∈ dom(gA) and gA(b1, . . . , bn) = c ⇐⇒ A ⊨ ψ(b1, . . . , bn, c). (7)

Let

χ(x1, . . . , xm, y) = ∃z1, . . . , zn

(
ψ(z1, . . . , zn, y) ⊓

nl

i=1

φi(x1, . . . , xm, zi)

)
. (8)

We show that χ defines h. Consider A ∈ K and a1, . . . , am, c ∈ A. By (8) we have

A ⊨ χ(a1, . . . , am, c) if and only if there exist b1, . . . , bn ∈ A such that A ⊨ φi(a1, . . . , am, bi)

for all i ⩽ n and A ⊨ ψ(b1, . . . , bn, c). By (6) and (7), the latter condition is equivalent to

⟨a1, . . . , am⟩ ∈ dom(fA
i ) and fA

i (a1, . . . , am) = bi for every i ⩽ n, and

⟨b1, . . . , bn⟩ ∈ dom(gA) and gA(b1, . . . , bn) = c.

In turn, this amounts to ⟨a1, . . . , am⟩ ∈ dom(hA) and hA(a1, . . . , am) = c by the definition of

h. Therefore, χ defines h, and hence h ∈ imp(K).

Suppose now that in addition g, f1, . . . , fn ∈ imppp(K). We can then assume that the

formulas ψ, φ1, . . . , φn that define g, f1, . . . , fn are pp formulas. Let χ be defined as in (8).

Since ψ and each φi are pp formulas, they are of the form ∃v⃗ψ′ and ∃u⃗iφ′
i, where v⃗ and

u⃗i are finite sequences of variables and ψ′ and φ′
i are finite conjunctions of equations. It is
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straightforward to verify that χ is equivalent to the formula obtained by pulling out the

existential quantifiers ∃v⃗ and ∃u⃗i from the conjunction in (8), and hence χ is equivalent to a

pp formula. Thus, h is defined by a pp formula, and so h ∈ imppp(K). ⊠

Example 3.14 (Isbell’s operations). A fundamental example of implicit operations of the

variety of monoids is due to Isbell [71]3. More precisely, for each n ⩾ 1 let

ψn(z1, . . . , zn, w1, . . . , wn, x1, . . . , x2n+1, y)

be the conjunction of the following equations in the language of monoids:

y ≈ x1z1

x1 ≈ w1x2

x2izi ≈ x2i+1zi+1 for i = 1, . . . , n− 1

wix2i+1 ≈ wi+1x2(i+1) for i = 1, . . . , n− 1

x2nzn ≈ x2n+1

wnx2n+1 ≈ y.

Then let φ0(x, y) = x ≈ y and for each n ⩾ 1,

φn(x1, . . . , x2n+1, y) = ∃z1, . . . , zn, w1, . . . , wnψn(z1, . . . , zn, w1, . . . , wn, x1, . . . , x2n+1, y).

We refer to φn as to the n-th Isbell’s formula. Notice that Isbell’s formulas are pp formulas.

It follows from [23, Lem. 4.4] that each Isbell’s formula is functional in the variety of monoids.

Whence, from Corollary 3.11 we deduce the following.

Theorem 3.15. Every Isbell’s formula defines an implicit operation of the variety of monoids.

Isbell’s formulas and the implicit operations they define, which we term Isbell’s operations,

will play a prominent role in the next sections (see Example 4.8, Isbell’s Zigzag Theorem 4.9,

and Proposition 14.4). ⊠

Example 3.16 (Reduced commutative rings). Throughout this work, rings will be assumed

to possess an identity element. Given an element a of a ring ⟨A; +, ·,−, 0, 1⟩, we denote its

multiplicative inverse (when it exists) by a−1. By a field we understand a commutative ring

A with 0 ̸= 1 such that a−1 exists for each a ∈ A− {0}. The class of fields will be denoted

by Field.

A commutative ring A is said to be reduced when for each a ∈ A,

a · a = 0 implies a = 0

(see, e.g., [48]). The class of reduced commutative rings forms a quasivariety RCRing axioma-

tized relative to commutative rings by the quasiequation x · x ≈ 0 → x ≈ 0. We remark that

this quasivariety is proper because the ring of integers Z is reduced, while its quotient Z4 is

not. We rely on the next characterization of reduced commutative rings.

3While these operations are traditionally considered in the variety of semigroups, it is straightforward to

verify that all their properties relevant to our discussion continue to hold in the variety of monoids.
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Theorem 3.17. The class of reduced commutative rings coincides with the quasivariety

generated by all fields.

Proof. We will prove that

RCRing = ISP(Field) = ISPPu(Field) = Q(Field).

The first equality above holds because a commutative ring is reduced if and only if it embeds

into a direct product of fields (see, e.g., [91, Prop. 3.1]), the second because Field is an

elementary class and, therefore, closed under Pu, and the third follows from Theorem 2.2. ⊠

Let A be a field and a ∈ A. The weak inverse of a in A is the element

wi(a) =

{
a−1 if a ̸= 0;

0 if a = 0.
(9)

We will prove the following.

Theorem 3.18. There exists a unary implicit operation f of the quasivariety of reduced

commutative rings such that fA is total and fA(a) = wi(a) for all fields A and a ∈ A.

Moreover, f can be defined by the conjunction of equations

φ = (x2y ≈ x) ⊓ (xy2 ≈ y).

Proof. We will prove that for every field A and a, b ∈ A we have

A ⊨ φ(a, b) ⇐⇒ b = wi(a). (10)

The implication from right to left is straightforward. To prove the reverse implication, suppose

that A ⊨ φ(a, b), i.e.,

a2b = a and ab2 = b.

We have two cases: either a ̸= 0 or a = 0. First, suppose that a ≠ 0. Then wi(a) = a−1.

Therefore, from a2b = a it follows that

b = a−2a2b = a−2a = a−1,

where a−2 abbreviates (a−1)2. Whence b = a−1 = wi(a). Then we consider the case where

a = 0. In this case, wi(a) = 0. From a = 0 and ab2 = b it follows that b = 0 = wi(a). This

establishes (10). Consequently, φ is functional in Field.

Recall from Theorem 3.17 that Q(Field) = RCRing. As φ is a pp formula and is functional

in Field, we can apply Corollary 3.11, obtaining that φ defines an implicit operation f of

RCRing. Lastly, (10) ensures that fA(a) = wi(a) for every field A and a ∈ A. ⊠

Example 3.19 (Distributive lattices). Given a lattice A and b, c ∈ A, we let

[b, c] = {a ∈ A : b ⩽ a ⩽ c}.

Moreover, given a, d ∈ A, we say that d is a complement of a relative to the interval [b, c]

when

a ∧ d = b and a ∨ d = c.
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In distributive lattices, relative complements are unique when they exist [16, Cor. IX.1].

Consequently, with every distributive lattice A we can associate a ternary partial function

fA on A with domain

dom(fA) = {⟨a, b, c⟩ ∈ A3 : a has a complement relative to [a ∧ b ∧ c, a ∨ b ∨ c] in A},

defined for each ⟨a, b, c⟩ ∈ dom(fA) as

fA(a, b, c) = the complement of a relative to [a ∧ b ∧ c, a ∨ b ∨ c] in A.

Let DL be the variety of distributive lattices. Then the sequence f = ⟨fA : A ∈ DL⟩ is a

partial function on DL, which captures the idea of “taking relative complements”.

This construction acquires special interest in the case of bounded distributive lattices. For

let A = ⟨A;∧,∨, 0, 1⟩ be a bounded distributive lattice and a, b ∈ A. Then b is said to be a

complement of a when

a ∧ b = 0 and a ∨ b = 1

or, equivalently, when b is a complement of a relative to [0, 1] = A. With every bounded

distributive lattice A we can associate a unary partial function fA on A with domain

dom(fA) = {a ∈ A : a has a complement in A},

defined for each a ∈ dom(fA) as

fA(a) = the complement of a in A.

Let bDL be the variety of bounded distributive lattices. Then the sequence f = ⟨fA : A ∈
bDL⟩ is a partial function on bDL, which captures the idea of “taking complements”.

Theorem 3.20. The following conditions hold:

(i) taking relative complements is a ternary implicit operation of the variety of distributive

lattices which, moreover, can be defined by the conjunction of equations

φ = (x1 ∧ y ≈ x1 ∧ x2 ∧ x3) ⊓ (x1 ∨ y ≈ x1 ∨ x2 ∨ x3);

(ii) taking complements is a unary implicit operation of the variety of bounded distributive

lattices which, moreover, can be defined by the conjunction of equations

ψ = (x ∧ y ≈ 0) ⊓ (x ∨ y ≈ 1).

Proof. (i): Observe that the partial function f on DL of “taking relative complements” can

be defined by the conjunction of equations

φ(x1, x2, x3, y) = (x1 ∧ y ≈ x1 ∧ x2 ∧ x3) ⊓ (x1 ∨ y ≈ x1 ∨ x2 ∨ x3).

Therefore, from Theorem 3.9 it follows that f is an implicit operation of DL.

(ii): Analogous to the proof of (i). ⊠

Example 3.21 (Absolute value). Let φ be the pp formula

φ(x, y) = ∃z1, z2, z3, z4((y ≈ z21 + z22 + z23 + z24) ⊓ (x2 ≈ y2))

in the language of rings. By Lagrange’s four squares theorem any nonnegative integer can

be written as the sum of four integer squares (see, e.g., [3, Thm. 11-3]). Therefore, for all
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a, b ∈ Z we have that Z ⊨ φ(a, b) if and only if b ⩾ 0 and a2 = b2, which happens exactly

when b = |a|. In particular, φ is functional in Z. Then Corollary 3.11 implies that φ defines

an implicit operation f of the quasivariety K of rings generated by Z such that fZ is the

absolute value function.

While f is an implicit operation defined by a pp formula, it is interesting to observe that f

cannot be defined by a conjunction of equations. Indeed, suppose, on the contrary, that f

is defined on K by a conjunction of equations ψ. In the variety of commutative rings, each

equation in variables x and y is equivalent to an equation of the form p(x, y) ≈ 0, where

p(x, y) is a polynomial with integer coefficients. So, we can assume that

ψ =
nl

i=1

pi(x, y) ≈ 0,

where each pi(x, y) is a polynomial with integer coefficients. Since ψ defines the absolute

value function on Z, we have that Z ⊨ ψ(a, a) for every nonnegative integer a. Thus, for

every i the polynomial pi(x, x) in a single variable x vanishes on every nonnegative integer.

We recall that the only polynomial in a single variable with rational coefficients that has

infinitely many roots is the zero polynomial (see, e.g., [4, Prop. 12.2.20]). Then pi(x, x) is

the zero polynomial, and hence pi(−1,−1) = 0 for every i. We conclude that Z ⊨ ψ(−1,−1),

which contradicts that fZ(−1) = |−1| = 1. Therefore, f cannot be defined by a conjunction

of equations.

4. Existential elimination

The idea of interpolating a given family of functions by simpler ones plays a fundamental

role in mathematics. For instance, a well-known theorem of Lagrange states that every finite

set of pairs of real numbers can be interpolated by a polynomial with real coefficients (see,

e.g., [101, Thm. 6.1]). In this section, we will establish a general interpolation theorem for

the implicit operations of a quasivariety K.

More precisely, recall from Corollary 3.10 that every implicit operation of K can be obtained

by gluing together finitely many implicit operations defined by pp formulas. The main result

of this section states that, if K has the amalgamation property, the study of its implicit

operations can be further simplified by observing that each implicit operation defined by a

pp formula is interpolated by one defined by a conjunction of equations (Theorem 4.3). We

term this phenomenon existential elimination because conjunctions of equations are obtained

by removing existential quantifiers from pp formulas.

As we mentioned, the reason for existential elimination is the amalgamation property,

whose definition we proceed to recall.

Definition 4.1. A class of algebras K is said to have the amalgamation property when for

every pair of embeddings h1 : A → B and h2 : A → C with A,B,C ∈ K there exists a pair

of embeddings g1 : B → D and g2 : C → D with D ∈ K such that g1 ◦ h1 = g2 ◦ h2.
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Furthermore, we will rely on the following notion of interpolation.

Definition 4.2. Let F ∪ {g} be a family of n-ary implicit operations of a class of algebras

K. We say that g is interpolated by F when for all A ∈ K and ⟨a1, . . . , an⟩ ∈ dom(gA) there

exists f ∈ F such that

⟨a1, . . . , an⟩ ∈ dom(fA) and fA(a1, . . . , an) = gA(a1, . . . , an).

When F = {f}, we often say that g is interpolated by f .

Given a class of algebras K, we denote by impeq(K) the set of implicit operations of K

defined by a conjunction of equations. When K = {A}, we often write impeq(A) instead of

impeq(K).4 The aim of this section is to establish the following interpolation result.

Theorem 4.3. The following conditions hold for a quasivariety K with the amalgamation

property:

(i) every member of imppp(K) can be interpolated by some member of impeq(K);

(ii) every member of imp(K) can be interpolated by a finite subset of impeq(K).

As the variety of monoids lacks the amalgamation property (see, e.g., [76, p. 100]5),

it falls outside the scope of Theorem 4.3. This is reflected by the fact that this variety

possesses implicit operations defined by pp formulas that cannot be interpolated by any

implicit operation defined by a conjunction of equations, an example being every n-th Isbell’s

operation for n ⩾ 1 (see Example 4.15). On the other hand, the variety of distributive

lattices has the amalgamation property (see, e.g., [7, Thm. VII.8.4]) and, therefore, each

of its implicit operations defined by pp formulas can be interpolated by one defined by a

conjunction of equations.

The rest of this section is devoted to the proof of Theorem 4.3. The first ingredient of the

proof is the following concept, introduced in [71] (see also [6]).

Definition 4.4. Let K be a class of algebras and A ⩽ B a pair of LK-algebras. The dominion

of A in B relative to K is the set

dK(A,B) = {b ∈ B : for each pair of homomorphisms g, h : B → C with C ∈ K,

if g↾A = h↾A, then g(b) = h(b)}.
4Although we will not rely on this fact, we will show in Example 4.16 that impeq(K) need not be closed

under composition (cf. Proposition 3.13).
5As observed in [76, p. 108], the failure of the amalgamation property for the variety of monoids can be

seen as a consequence of the corresponding result for the variety of semigroups proved in [75] (see also [37,

Exa. 1]).
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It is straightforward to verify that dK(A,B) is the universe of a subalgebra of B that

contains A. It follows immediately from its definition that dK(A,B) is the intersection of

all the equalizers of pairs of homomorphisms g, h : B → C with C ∈ K that agree on A,

where we recall that the equalizer of g and h is {b ∈ B : g(b) = h(b)}. Moreover, when K is

closed under direct products, it turns out that dK(A,B) is itself the equalizer of a pair of

homomorphisms from B into an algebra of K that agree on A.

We rely on the following fact.

Proposition 4.5. Let K be a class of algebras, A ⩽ B ∈ K, and A′ ⩽ B′ ∈ K. If g : B → B′

is a homomorphism with g[A] ⊆ A′, then g[dK(A,B)] ⊆ dK(A′,B′).

Proof. Let b ∈ g[dK(A,B)]. Then there exists a ∈ dK(A,B) with g(a) = b. Suppose that

h1, h2 : B′ → C are homomorphisms with C ∈ K and h1↾A′ = h2↾A′ . Since g[A] ⊆ A′, the

homomorphisms h1 ◦ g, h2 ◦ g : B → C satisfy (h1 ◦ g)↾A = (h2 ◦ g)↾A. As a ∈ dK(A,B), it

follows that h1(g(a)) = h2(g(a)). Therefore, b = g(a) ∈ dK(A′,B′), as desired. ⊠

As an immediate consequence of the previous proposition we obtain the following result,

where, for A ⩽ B and θ ∈ Con(B), we denote the subalgebra of B/θ with universe

{a/θ : a ∈ A} by A/θ.

Corollary 4.6. The following conditions hold for every class K of algebras and A ⩽ B ∈ K.

(i) If A ⩽ A′ ⩽ B′ ∈ K and B ⩽ B′, then dK(A,B) ⊆ dK(A′,B′).

(ii) If θ ∈ Con(B) and B/θ ∈ K, then b ∈ dK(A,B) implies b/θ ∈ dK(A/θ,B/θ).

Proof. Both statements follow from Proposition 4.5: for (i) let g : B → B′ be the inclusion

map, and for (ii) let g : B → B/θ be the canonical surjection. ⊠

In general, the task of describing dominions for concrete classes of algebras may be hard.

However, in some cases a tangible description is within reach.

Example 4.7 (Distributive lattices). In the variety DL of distributive lattices dominions can

be described as follows (see [105, Thm. 2.4]). For each A ⩽ B ∈ DL the dominion dDL(A,B)

is the least subset C of B containing A and closed under meets and joins such that for all

a, b, c ∈ C and d ∈ B,

if d is the complement of a relative to [b, c], then d ∈ C. ⊠

Example 4.8 (Monoids). For each n ∈ N let φn(x1, . . . , x2n+1, y) be the n-th Isbell’s formula

defined in Example 3.14. Dominions in the varieties of monoids and commutative monoids

are described by the following classic result (see [68, Thm. 1.2]).

Isbell’s Zigzag Theorem 4.9. Let K be the variety of monoids or the variety of commutative

monoids. For each A ⩽ B ∈ K and b ∈ B we have

b ∈ dK(A,B) ⇐⇒ B ⊨ φn(a1, . . . , a2n+1, b) for some n ∈ N and a1, . . . , a2n+1 ∈ A.

This theorem was originally stated for the variety of semigroups in [71]. Similar descriptions

of dominions have been obtained for the varieties of commutative semigroups, rings, and

commutative rings (see [69, 72]). ⊠
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We will make use of the following description of dominions in terms of implicit operations

(see [6, Thm. 1] and [23, Thm. 3.2]).

Theorem 4.10. Let K be an elementary class. For every A ⩽ B ∈ K we have

dK(A,B) = {b ∈ B : there exist f ∈ imppp(K) and ⟨a1, . . . , an⟩ ∈ dom(fB) ∩ An

such that fB(a1, . . . , an) = b}.

As shown in the next result, the amalgamation property simplifies the task of describing

dominions.

Proposition 4.11. Let K be a class of algebras closed under finite direct products with the

amalgamation property and A ⩽ B ⩽ C with B,C ∈ K. Then

dK(A,B) = dK(A,C) ∩B.

Proof. We first prove the inclusion from left to right. As B ⩽ C, from Corollary 4.6(i)

it follows that dK(A,B) ⊆ dK(A,C). Since dK(A,B) ⊆ B by definition, we obtain that

dK(A,B) ⊆ dK(A,C) ∩B.

Next we prove the inclusion from right to left. Suppose, with a view to contradiction, that

this inclusion fails. Then there exists b ∈ B such that

b ∈ dK(A,C) and b /∈ dK(A,B). (11)

As b ∈ B, the right hand side of the above display implies that there exists a pair of

homomorphisms f1, f2 : B → D with D ∈ K such that

f1↾A = f2↾A and f1(b) ̸= f2(b). (12)

We may assume that f1 and f2 are embeddings. Otherwise, we replace each fi by the

embedding f ∗
i : B → D × B defined as f ∗

i (c) = ⟨fi(c), c⟩ for every c ∈ B. Observe that

D ×B ∈ K because B,D ∈ K and K is closed under finite direct products by assumption.

Furthermore, from (12) and the definition of f ∗
1 and f ∗

2 it follows that f ∗
1 ↾A = f ∗

2 ↾A and

f ∗
1 (b) ̸= f ∗

2 (b). Consequently, from now on we will assume that f1 and f2 are embeddings.

Recall from the assumptions that B ⩽ C. Then let i : B → C be the inclusion map,

which is always an embedding. As i : B → C and f1 : B → D are a pair of embeddings with

B,C,D ∈ K, we can apply the assumption that K has the amalgamation property, obtaining

a pair of embeddings g1 : C → E and g2 : D → E with E ∈ K such that

g1 ◦ i = g2 ◦ f1. (13)

C

B E

D

g1i

f1 g2
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Since i, g1, g2, and f1 are embeddings, so are the compositions g1 ◦ i : B → E and g2 ◦
f2 : B → E. Together with E ∈ K, this allows us to apply the amalgamation property of K,

obtaining a pair of embeddings h1, h2 : E → F with F ∈ K such that

h1 ◦ g1 ◦ i = h2 ◦ g2 ◦ f2. (14)

C E

B F

D E

g1

h1i

f2

g2

h2

As i is the inclusion map from B to C, from (14) and (13) it follows that for each

c ∈ B ⊆ C,

h1 ◦ g1(c) = h2 ◦ g2 ◦ f2(c) and h2 ◦ g1(c) = h2 ◦ g2 ◦ f1(c). (15)

By the left hand side of (12) we have f1(a) = f2(a) for every a ∈ A. Together with (15) and

A ⊆ B, this yields that for every a ∈ A,

h1 ◦ g1(a) = h2 ◦ g2 ◦ f2(a) = h2 ◦ g2 ◦ f1(a) = h2 ◦ g1(a).

Hence, (h1◦g1)↾A = (h2◦g1)↾A. On the other hand, recall that f1(b) ̸= f2(b) by the right hand

side of (12). Since h2 ◦ g2 : C → F is an embedding (because so are h2 and g2), we obtain

h2◦g2◦f1(b) ̸= h2◦g2◦f2(b). Together with b ∈ B and (15), this implies h1◦g1(b) ̸= h2◦g1(b).
Since h2 ◦ g1 : C → F is a homomorphism with F ∈ K such that (h1 ◦ g1)↾A = (h2 ◦ g1)↾A,

we conclude that b /∈ dK(A,C), a contradiction with the left hand side of (11). ⊠

The second ingredient of the proof of Theorem 4.3 is the following construction, which

associates an algebra with every pp formula. We denote the set of variables occurring in a

formula φ by V ar(φ). For instance, if φ = ∃x(x+ y ≈ x), then V ar(φ) = {x, y}. Moreover,

we denote the term algebra with variables in V ar(φ) by T (V ar(φ)) and let

⌜φ⌝ = {⟨t1, t2⟩ : t1 ≈ t2 is an equation occurring in φ}.

Observe that ⌜φ⌝ ⊆ T (V ar(φ)) × T (V ar(φ)).

Definition 4.12. Let K be a quasivariety. With every pp formula φ we associate the algebra

TK(φ) = T (V ar(φ))/θ(φ), where θ(φ) = Cg
T (V ar(φ))
K (⌜φ⌝).

Recall that, when φ defines an implicit operation of K, we denote this operation by

φK = ⟨φA : A ∈ K⟩.

We rely on the next observation.

Proposition 4.13. Let φ(x1, . . . , xn, y) be a pp formula that defines an implicit operation of

a quasivariety K. Then the following conditions hold:

(i) TK(φ) is a finitely presented member of K such that

⟨x1/θ(φ), . . . , xn/θ(φ)⟩ ∈ dom(φTK(φ)) and φTK(φ)(x1/θ(φ), . . . , xn/θ(φ)) = y/θ(φ);
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(ii) for all A ∈ K and ⟨a1, . . . , an⟩ ∈ dom(φA) there exists a homomorphism h : TK(φ) → A

such that

h(xi/θ(φ)) = ai for each i ⩽ n and h(y/θ(φ)) = φA(a1, . . . , an).

Proof. Since φ is a pp formula, it is of the form ∃z1, . . . , zmψ, where ψ is a finite conjunction

of equations. Therefore,

φ = ∃z1, . . . , zm
l

i⩽k

ti ≈ si, (16)

where ti and si are terms in variables x1, . . . , xn, y, z1, . . . , zm.

(i): The algebra TK(φ) is a finitely presented member of K by definition. Therefore, it only

remains to show that for each i ⩽ k,

TK(φ) ⊨ φ(x1/θ(φ), . . . , xn/θ(φ), y/θ(φ)).

In view of (16), it will be enough to prove

TK(φ) ⊨

(l

i⩽k

ti ≈ si

)
(x1/θ(φ), . . . , xn/θ(φ), y/θ(φ), z1/θ(φ), . . . , zm/θ(φ)).

Let i ⩽ k. From the definitions of ⌜φ⌝ and θ(φ) it follows that ⟨ti, si⟩ ∈ ⌜φ⌝ ⊆ θ(φ).

Consequently,

t
TK(φ)
i (x1/θ(φ), . . . , xn/θ(φ), y/θ(φ), z1/θ(φ), . . . , zm/θ(φ))

= ti(x1, . . . , xn, y, z1, . . . , zm)/θ(φ)

= si(x1, . . . , xn, y, z1, . . . , zm)/θ(φ)

= s
TK(φ)
i (x1/θ(φ), . . . , xn/θ(φ), y/θ(φ), z1/θ(φ), . . . , zm/θ(φ)).

(ii): Let A ∈ K and ⟨a1, . . . , an⟩ ∈ dom(φA). Then A ⊨ φ(a1, . . . , an, φ
A(a1, . . . , an)). In

view of (16), there exist b1, . . . , bm ∈ A such that for each i ⩽ k,

tAi (a1, . . . , an, φ
A(a1, . . . , an), b1, . . . , bm) = sAi (a1, . . . , an, φ

A(a1, . . . , an), b1, . . . , bm). (17)

Now, let g : T (V ar(φ)) → A be the unique homomorphism such that

g(xi) = ai for each i ⩽ n, g(y) = φA(a1, . . . , an), and g(zj) = bj for each j ⩽ m.

(18)

From the above display and (17) it follows that ⌜φ⌝ ⊆ Ker(g). As A ∈ K by assumption, we

also have Ker(g) ∈ ConK(T (V ar(φ))). Consequently,

θ(φ) = Cg
T (φ)
K (⌜φ⌝) ⊆ Ker(g).

Since TK(φ) = T (V ar(φ))/θ(φ), we can apply Proposition 2.6 to the above display, obtaining a

homomorphism h : TK(φ) → A defined for every t ∈ T (V ar(φ)) as h(t/θ(φ)) = g(t). Together

with (18), this yields h(xi/θ(φ)) = ai for each i ⩽ n and h(y/θ(φ)) = φA(a1, . . . , an). ⊠

We are now ready to prove Theorem 4.3.
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Proof. (i): Let f be an implicit operation of K defined by a pp formula φ(x1, . . . , xn, y).

Consider the algebra

A = SgTK(φ)(x1/θ(φ), . . . , xn/θ(φ)).

By Proposition 4.13(i) we have

⟨x1/θ(φ), . . . , xn/θ(φ)⟩ ∈ dom(fTK(φ)) ∩ An and fTK(φ)(x1/θ(φ), . . . , xn/θ(φ)) = y/θ(φ).

Together with Theorem 4.10, this yields y/θ(φ) ∈ dK(A,TK(φ)). Now, let

B = SgTK(φ)(x1/θ(φ), . . . , xn/θ(φ), y/θ(φ)).

As A ⩽ B ⩽ TK(φ) ∈ K and K is a quasivariety with the amalgamation property, we can

apply Proposition 4.11 to y/θ(φ) ∈ dK(A,TK(φ)) ∩ B, obtaining y/θ(φ) ∈ dK(A,B). By

Theorem 4.10 there exist an m-ary g ∈ imppp(K) and ⟨a1, . . . , am⟩ ∈ dom(gB) ∩Am such that

gB(a1, . . . , am) = y/θ(φ).

Since g ∈ imppp(K), there exists a formula ∃z1, . . . , zkψ(x1, . . . , xm, y, z1, . . . , zk), where

ψ is a conjunction of equations, defining g. Together with ⟨a1, . . . , am⟩ ∈ dom(gB) and

gB(a1, . . . , an) = y/θ(φ), this guarantees the existence of b1, . . . , bk ∈ B such that

B ⊨ ψ(a1, . . . , am, y/θ(φ), b1, . . . , bk). (19)

As a1, . . . , am ∈ A, A ⩽ B, and A is generated by x1/θ(φ), . . . , xn/θ(φ) by definition, for each

i ⩽ m there exists a term ti(x1, . . . , xn) such that ai = tBi (x1/θ(φ), . . . , xn/θ(φ)). Similarly,

as b1, . . . , bk ∈ B and B is generated by x1/θ(φ), . . . , xn/θ(φ), y/θ(φ) by definition, for each

j ⩽ k there exists a term sj(x1, . . . , xn, y) such that bj = sBj (x1/θ(φ), . . . , xn/θ(φ), y/θ(φ)).

We consider the formula

γ = ψ(t1(x1, . . . , xn), . . . , tm(x1, . . . , xn), y, s1(x1, . . . , xn, y), . . . , sk(x1, . . . , xn, y)).

Notice that γ is a conjunction of equations because so is ψ. Then observe that the formula

∃z1, . . . , zkψ(x1, . . . , xm, y, z1, . . . , zk) is functional in K because it defines g. Together with

the definition of γ, this guarantees that γ is also functional in K. Hence, γ defines some

h ∈ impeq(K) by Corollary 3.11. Therefore, to conclude the proof, it suffices to show that h

interpolates f .

First, observe that from (19) and the definitions of γ and t1, . . . , tm, s1, . . . , sk it follows

that

B ⊨ γ(x1/θ(φ), . . . , xn/θ(φ), y/θ(φ)). (20)

As γ defines h, this yields

⟨x1/θ(φ), . . . , xn/θ(φ)⟩ ∈ dom(hB) and hB(x1/θ(φ), . . . , xn/θ(φ)) = y/θ(φ).

We are now ready to prove that h interpolates f . To this end, consider C ∈ K and

c1, . . . , cn, d ∈ C such that ⟨c1, . . . , cn⟩ ∈ dom(fC) and fC(c1, . . . , cn) = d. As f is defined by

the pp formula φ(x1, . . . , xn, y) by assumption, from Proposition 4.13(ii) it follows that there

exists a homomorphism e : TK(φ) → C such that

e(xi/θ(φ)) = ci for each i ⩽ n and e(y/θ(φ)) = d.

Since B ⩽ TK(φ) and x1/θ(φ), . . . , xn/θ(φ), y/θ(φ) ∈ B by the definition of B, the above

display still holds if we restrict e to a homomorphism e : B → C. As h is an implicit
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operation of K, it is preserved by homomorphism between members of K and, in particular,

by e. Together with (20) and the above display, this yields

⟨c1, . . . , cn⟩ = ⟨e(x1/θ(φ)), . . . , e(xn/θ(φ))⟩ ∈ dom(hC)

and

d = e(y/θ(φ)) = e(hB(x1/θ(φ), . . . , xn/θ(φ))) = hC(e(x1/θ(φ)), . . . , e(xn/θ(φ)))

= hC(c1, . . . , cn).

Since fC(c1, . . . , cn) = d, we conclude that h interpolates f .

(ii): Immediate consequence of (i) and Corollary 3.10. ⊠

From Theorems 4.3(i) and 4.10 we deduce the following (for a similar observation, see [6,

Thm. 1∗, p. 475] and [5]).

Corollary 4.14. Let K be a quasivariety with the amalgamation property. For every A ⩽
B ∈ K we have

dK(A,B) = {b ∈ B : there exist f ∈ impeq(K) and ⟨a1, . . . , an⟩ ∈ dom(fB) ∩ An

such that fB(a1, . . . , an) = b}.

We close this section with two examples. The first shows that Isbell’s operations cannot

be interpolated by any implicit operation defined by a conjunction of equations in the variety

of commutative monoids, and the second shows that condition (i) of Theorem 4.3 cannot be

improved by requiring the equality imppp(K) = impeq(K).

Example 4.15 (Isbell’s operations). For every positive n let fn be the n-th Isbell’s operation,

viewed as an implicit operation of the variety Mon of monoids (see Example 3.14 and

Theorem 3.15). Then fn ∈ imppp(Mon). We will prove that fn cannot be interpolated by

any member of impeq(Mon). Suppose the contrary, with a view to contradiction. Then fn is

interpolated by some g ∈ impeq(Mon). Consider the commutative monoids N = ⟨N; ·, 1⟩ and

Q = ⟨Q; ·, 1⟩. Moreover, let a1, . . . , an, b1, . . . , bn, c1, . . . , c2n+1, d be the sequence of rationals

defined as follows: for every 1 ⩽ i ⩽ n and 1 < j < 2n+ 1,

ai =
1

2
= bi, cj = 12, c1 = 6 = c2n+1, d = 3.

Using the formula ψn in Example 3.14, we have

Q ⊨ ψn(a1, . . . , an, b1, . . . , bn, c1, . . . , c2n+1, d).

By the definition of fn this yields ⟨c1, . . . , c2n+1⟩ ∈ dom(fQ
n ) and fQ

n (c1, . . . , c2n+1) = d.

As g interpolates fn, we obtain ⟨c1, . . . , c2n+1⟩ ∈ dom(gQ) and gQ(c1, . . . , c2n+1) = d. Let

φ(x1, . . . , x2n+1, y) be the conjunction of equations defining g. Then Q ⊨ φ(c1, . . . , c2n+1, d).

As φ is a universal formula and c1, . . . , c2n+1, d ∈ N, Theorem 1.1(iii) implies that N ⊨
φ(c1, . . . , c2n+1, d), and hence ⟨c1, . . . , c2n+1⟩ ∈ dom(gN) and gN(c1, . . . , c2n+1) = d. Let A and

B be the submonoids of N with universes A = {1}∪{2m : m ∈ N} andB = {0, 1}, respectively.
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Since c1, . . . , c2n+1 ∈ A and g ∈ impeq(Mon), Theorem 4.10 yields 3 = d ∈ dMon(A,N). Let

h, k : N → B be given by

h(m) =

{
1 if m = 1,

0 otherwise,
k(m) =

{
1 if m is odd,

0 otherwise.

It is immediate to verify that h and k are homomorphisms such that h↾A = k↾A and

h(3) ̸= k(3), whence 3 /∈ dMon(A,N). As this is false, we conclude that fn cannot be

interpolated by any member of impeq(Mon). ⊠

Example 4.16 (Cancellative commutative monoids). An element a of a monoid A = ⟨A; ·, 1⟩
is said to be cancellative when for all b, c ∈ A,

(ab = ac implies b = c) and (ba = ca implies b = c).

When all the elements of A are cancellative, we say that A is cancellative (see, e.g., [38, 39]).

The class of cancellative commutative monoids forms a quasivariety, denoted by CCMon,

which is axiomatized relative to commutative monoids by the quasiequation xy ≈ xz → y ≈ z.

We recall that CCMon has the amalgamation property (see, e.g., [76, pp. 100, 108]) and,

therefore, falls within the scope of Theorem 4.3. On the other hand, we will show that

imppp(CCMon) ̸= impeq(CCMon).

Consider the pp formula

φ(x, y) = ∃z(xz ≈ 1 ⊓ y ≈ 1).

Notice that φ is functional in CCMon. Indeed, A ⊨ φ(a, b) implies b = 1 for all A ∈ CCMon

and a, b ∈ A. Since φ is a pp formula, we can apply Corollary 3.11, obtaining that it

defines a unary f ∈ imppp(CCMon). Moreover, if A ∈ CCMon, then dom(fA) consists of the

invertible elements of A. We show that f /∈ impeq(CCMon). Suppose the contrary, with a

view to contradiction. Then consider the cancellative commutative monoids N = ⟨N; ·, 1⟩ and

Q = ⟨Q; ·, 1⟩. We have

2 ∈ dom(fQ) and fQ(2) = 1.

Since f is defined by a conjunction of equations, from the above display and 1, 2 ∈ N ⩽ Q it

follows that 2 ∈ dom(fN), a contradiction with the fact that 2 is not invertible in N. Hence,

we conclude that imppp(CCMon) ̸= impeq(CCMon).

We conclude this example by showing that impeq(CCMon) is not closed under composition.

Observe that f coincides with the composition h ◦ g, where h ∈ impeq(CCMon) is the unary

implicit operation defined by the equation y ≈ 1 and g ∈ impeq(CCMon) is the implicit

operation of “taking inverses” in monoids (see Example 3.4) restricted to CCMon. Since

h◦g = f /∈ impeq(CCMon), this shows that impeq(CCMon) is not closed under composition. ⊠

5. The strong Beth definability property

As the implicit operations of a class of algebras need not be term functions, it is natural to

wonder whether they can at least be interpolated by a set of terms, which can be thought

of as a way of rendering them “explicit”. This idea is reminiscent of the Beth Definability

Theorem of first order logic (see, e.g., [63, pp. 301–302]), a fundamental result stating that
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every implicit definition can be turned explicit (in the setting of first order theories). However,

the notions of implicit and explicit definability typical of first order logic differ from ours. For

instance, an explicit definition in first order logic is simply a definition given by a formula.

As our implicit operations are defined by a formula by definition, they are already explicitly

definable in the sense of first order logic. As a consequence, the Beth Definability Theorem

cannot be applied to our implicit operations in a nontrivial way and, in particular, it does

not guarantee they can be interpolated by a set of terms, that is, made explicit in our sense.

The next definition formalizes the idea of interpolating implicit operations by sets of terms

and is a particular instance of the notion of interpolation introduced in Definition 4.2.

Definition 5.1. Let f be an n-ary implicit operation of a class of algebras K. We say that f

is interpolated by a set {ti : i ∈ I} of n-ary terms of K when it is interpolated by {tKi : i ∈ I}.

This means that for all A ∈ K and ⟨a1, . . . , an⟩ ∈ dom(fA) there exists i ∈ I such that

fA(a1, . . . , an) = tAi (a1, . . . , an).

Intuitively, the partial function f is made “explicit” by the terms in {ti : i ∈ I}.

Notice that f is interpolated by a set of terms if and only if fA(a1, . . . , an) ∈ SgA(a1, . . . , an)

for all A ∈ K and ⟨a1, . . . , an⟩ ∈ dom(fA). When f is defined by a formula φ, the demand

that f be interpolated by the set of terms {ti : i ∈ I} can be rendered as follows:

K ⊨ φ(x1, . . . , xn, y) →
⊔
i∈I

ti(x1, . . . , xn) ≈ y. (21)

As a consequence of the Compactness Theorem 1.3, we obtain the following.

Proposition 5.2. An implicit partial function on an elementary class can be interpolated by

a set of terms if and only if it can be interpolated by a finite set of terms.

Proof. Let f be a partial function on an elementary class K. Assume that f is defined by a

formula φ(x1, . . . , xn, y) and that it can be interpolated by a set of terms {ti : i ∈ I}. Then

condition (21) holds. From the Compactness Theorem 1.3 it follows that there exists a finite

T ⊆ {ti : i ∈ I} such that

K ⊨ φ(x1, . . . , xn, y) →
⊔
t∈T

t(x1, . . . , xn) ≈ y.

As f is defined by φ, this means that f is interpolated by the terms in T . ⊠

When viewed as an implicit operation on a class of algebras K, every term function

⟨tA : A ∈ K⟩ of K is interpolated by a single term, namely, t (see Example 3.8). However, not

all implicit operations can be interpolated by terms. For instance, there is no set of terms

interpolating the implicit operation of “taking inverses” in the variety of monoids as we

will see in Example 6.8. It is therefore sensible to isolate the cases in which interpolation

is always possible, something that indicates a good balance between the expressivity of the

language (measured by what can be said in terms of implicit operations) and its actual

richness (measured by what can be interpolated, or made explicit, by terms).
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Definition 5.3. A class of algebras is said to have the strong Beth definability property when

each of its implicit operations can be interpolated by a set of terms.

The reason why we termed our Beth definability property “strong” is to distinguish it from

other weaker definability properties considered in the literature (see [17, 81]). Although we

will not rely on this fact, we remark that, when a quasivariety is the equivalent algebraic

semantics of a propositional logic in the sense of [19], the strong Beth definability property is

the algebraic counterpart of the so called projective Beth property investigated in [9, p. 76]

(see also [65, Sec. 2.2.3] and [88, 89, 90]).

In the context of elementary classes, the strong Beth definability property can be equiva-

lently formulated by restricting our attention to implicit operations defined by pp formulas

and interpolation by a finite set of terms. More precisely, we have the following.

Proposition 5.4. The following conditions are equivalent for an elementary class K:

(i) K has the strong Beth definability property;

(ii) each implicit operation of K defined by a pp formula can be interpolated by a finite set

of terms.

Proof. The implication (i)⇒(ii) is an immediate consequence of Proposition 5.2. To prove

(ii)⇒(i) suppose that each implicit operation of K defined by a pp formula can be interpolated

by a finite set of terms. Then let f be an implicit operation of K. By Corollary 3.10 there

exist some implicit operations f1, . . . , fn of K defined by pp formulas such that for each

A ∈ K,

fA = fA
1 ∪ · · · ∪ fA

n .

By assumption each fi is interpolated by a finite set of terms Ti. In view of the above display,

we conclude that f is interpolated by the terms in T1 ∪ · · · ∪ Tn. ⊠

Rephrasing condition (ii) of Proposition 5.4 in terms of the validity of certain formulas in

K yields the following.

Corollary 5.5. An elementary class K has the strong Beth definability property if and only

if for each pp formula φ(x1, . . . , xn, y) such that

K ⊨ (φ(x1, . . . , xn, y) ⊓ φ(x1, . . . , xn, z)) → y ≈ z

there exist terms t1(x1, . . . , xn), . . . , tm(x1, . . . , xn) such that

K ⊨ φ(x1, . . . , xn, y) →
⊔
i⩽m

ti(x1, . . . , xn) ≈ y.

For elementary classes closed under direct products the equivalence in Proposition 5.4 can

be refined as follows.

Proposition 5.6. The following conditions are equivalent for an elementary class K closed

under direct products:

(i) K has the strong Beth definability property;

(ii) each implicit operation of K defined by a pp formula can be interpolated by a single term.
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Proof. (i)⇒(ii): Suppose that K has the strong Beth definability property. Then consider

an implicit operation f of K that can be defined by a pp formula φ(x1, . . . , xn, y). From the

strong Beth definability property it follows that f can be interpolated by a set of terms

{ti : i ∈ I}. As f is defined by φ, this amounts to

K ⊨ φ(x1, . . . , xn, y) →
⊔
i∈I

ti(x1, . . . , xn) ≈ y.

Since φ is a pp formula and K an elementary class closed under P by assumption, we can

apply Corollary 1.4, obtaining that there exists i ∈ I such that

K ⊨ φ(x1, . . . , xn, y) → ti(x1, . . . , xn) ≈ y.

As φ defines f , we conclude that f is interpolated by ti.

(ii)⇒(i): Immediate from the implication (ii)⇒(i) of Proposition 5.4. ⊠

6. The strong epimorphism surjectivity property

The strong Beth definability property admits a purely algebraic formulation, as we proceed

to illustrate. Let K be a class of algebras. A homomorphism f : A → B with A,B ∈ K

is said to be a K-epimorphism when it is right cancellable, that is, when for every pair of

homomorphisms g, h : B → C with C ∈ K,

g ◦ f = h ◦ f implies g = h.

While every surjective homomorphism between members of K is a K-epimorphism, the

converse need not hold in general. For instance, the inclusion map of ⟨Z; ·, 1⟩ into ⟨Q; ·, 1⟩ is

a nonsurjective epimorphism in the variety of monoids. Consequently, a class of algebras K is

said to have the epimorphism surjectivity property when every K-epimorphism is surjective.

We will show that, in the setting of universal classes, the strong Beth definability property

is equivalent to the following strengthening of the epimorphism surjectivity property (see

Theorem 6.5).

Definition 6.1. A class of algebras K has the strong epimorphism surjectivity property when

for every homomorphism f : A → B with A,B ∈ K and b ∈ B − f [A] there exists a pair of

homomorphisms g, h : B → C with C ∈ K such that g ◦ f = h ◦ f and g(b) ̸= h(b).

A

f

B

f [A]

b

g

h

C

g(b)

h(b)
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Remark 6.2. When K is closed under I and S, we may assume that A ⩽ B and that the map

f : A → B in the above definition is an inclusion map. In this case, the strong epimorphism

surjectivity property simplifies to the demand that for all A ⩽ B ∈ K and b ∈ B − A

there exists a pair of homomorphisms g, h : B → C with C ∈ K such that g↾A = h↾A and

g(b) ̸= h(b). Moreover, when K is a quasivariety, the Subdirect Decomposition Theorem 2.9

allows us to assume C ∈ Krsi. ⊠

Example 6.3 (Abelian groups). We view groups as algebras A = ⟨A; ·,−1 , 1⟩, i.e., we assume

that multiplication, taking inverses, and the neutral element are all basic operations. While

it is known that every variety of Abelian groups has the strong epimorphism surjectivity

property, we provide a short proof for the sake of completeness. For consider a variety

of Abelian groups V, A ⩽ B ∈ V, and b ∈ B − A. Since congruences in Abelian groups

correspond to subgroups, there exists a congruence θ of B associated with the subgroup A.

Clearly, the canonical surjection g : B → B/θ is a homomorphism such that g−1(1/θ) = A

and B/θ ∈ V. Then let h : B → B/θ be the homomorphism that sends every element of

B to 1/θ. From g−1(1/θ) = A and the definition of h it follows that g(a) = 1/θ = h(a) for

each a ∈ A, whence g↾A = h↾A. On the other hand, from b /∈ A = g−1(1/θ) it follows that

g(b) ̸= 1/θ, while h(b) = 1/θ by the definition of h. Hence, g(b) ̸= h(b). We conclude that V

has the strong epimorphism surjectivity property. ⊠

While every class with the strong epimorphism surjectivity property has the epimorphism

surjectivity property, the converse need not hold in general. For instance, it is known that

only 16 varieties of Heyting algebras have the strong epimorphism surjectivity property [90,

Thm. 8.1]. On the other hand, there exists a continuum of varieties of Heyting algebras with

the nonstrong version of this property [14, p. 199]. However, the two properties coincide in

quasivarieties with the amalgamation property (see Theorem 7.14).

Remark 6.4. In the context of quasivarieties, the strong epimorphism surjectivity property

admits a purely categorical formulation. For observe that each quasivariety K can be viewed

as a category whose objects are the members of K and whose arrows are the homomorphisms

between them. As quasivarieties contain free algebras (see Theorem 2.19), monomorphisms

coincide with embeddings in quasivarieties (see, e.g., [1, Prop. 8.29]). A monomorphism is

said to be regular when it is an equalizer. It turns out that a quasivariety K has the strong

epimorphism surjectivity property if and only if all monomorphisms are regular in K (see,

e.g., [76, Prop. 6.1]). ⊠

For the present purpose, the interest of the strong epimorphism surjectivity property comes

from the fact that it is the algebraic counterpart of the strong Beth definability property.

More precisely, we will prove the following theorem which generalizes the correspondences

between the strong epimorphism surjectivity property and definability properties established

in [6, Thm. 4], [88, Thm. 3.6], [89, Thm. 3.1], and [64, Thm. 5].

Theorem 6.5. A universal class has the strong epimorphism surjectivity property if and only

if it has the strong Beth definability property.
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As an immediate consequence of Remark 6.2, we obtain an alternative formulation of the

strong epimorphism surjectivity property in terms of dominions.

Proposition 6.6. Let K be a class of algebras closed under I and S. Then K has the strong

epimorphism surjectivity property if and only if dK(A,B) = A for every A ⩽ B ∈ K.

From Theorem 4.10 and Proposition 6.6 we deduce the following.

Corollary 6.7. A universal class K has the strong epimorphism surjectivity property if

and only if for all A ⩽ B ∈ K, f ∈ imppp(K), and ⟨a1, . . . , an⟩ ∈ dom(fB) ∩ An we have

fB(a1, . . . , an) ∈ A.

We are now ready to prove Theorem 6.5.

Proof. Let K be a universal class. To prove the implication from left to right, we reason by

contraposition. Suppose that K lacks the strong Beth definability property. By Proposi-

tions 5.2 and 5.4 there exists f ∈ imppp(K) that cannot be interpolated by any set of terms.

Therefore, there exists B ∈ K and ⟨a1, . . . , an⟩ ∈ dom(fB) for which there exists no term

t such that fB(a1, . . . , an) = tB(a1, . . . , an). Then fB(a1, . . . , an) /∈ SgB(a1, . . . , an). Let

A = SgB(a1, . . . , an). Since ⟨a1, . . . , an⟩ ∈ dom(fB)∩An and fB(a1, . . . an) /∈ A, Corollary 6.7

implies that K lacks the strong epimorphism surjectivity property.

Next we prove the implication from right to left. Suppose that K has the strong Beth

definability property. In order to prove that K has the strong epimorphism surjectivity

property, it suffices to show that dK(A,B) = A for every A ⩽ B ∈ K (see Proposition 6.6). To

this end, consider A ⩽ B ∈ K and b ∈ dK(A,B). By Theorem 4.10 there exist f ∈ imppp(K)

and ⟨a1, . . . , an⟩ ∈ dom(fB) ∩ An such that b = fB(a1, . . . , an). Since K has the strong

Beth definability property, there exists a term t such that fB(a1, . . . , an) = tB(a1, . . . , an).

Therefore,

b = fB(a1, . . . , an) = tB(a1, . . . , an) = tA(a1, . . . , an) ∈ A.

This shows that dK(A,B) ⊆ A. As the reverse inclusion always holds, we conclude that

dK(A,B) = A. ⊠

We close this section with a series of examples of classes of algebras with and without the

strong epimorphism surjectivity property.

Example 6.8 (Monoids). As we mentioned, the inclusion map of Z = ⟨Z; ·, 1⟩ into Q =

⟨Q; ·, 1⟩ is a nonsurjective epimorphism in the variety of monoids Mon, whence Mon lacks the

epimorphism surjectivity property, and consequently its strong version as well.

This can also be viewed through the lens of Corollary 6.7. For let f be the implicit

operation of “taking inverses” in monoids and recall that it can be defined by a pp formula

(see Theorem 3.7). Clearly, Z ⩽ Q and 2 ∈ dom(fQ) ∩ Z. Moreover,

fQ(2) = 2−1 =
1

2
/∈ Z.

From Corollary 6.7 it follows that Mon lacks the strong epimorphism surjectivity property.

The same proof yields the same conclusion for the variety of commutative monoids. In view

of Theorem 6.5, both varieties lack the strong Beth definability property. ⊠
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Example 6.9 (Reduced commutative rings). Essentially the same argument shows that the

quasivariety RCRing of reduced commutative rings lacks the strong epimorphism surjectivity

property. More precisely, let Z and Q be the reduced commutative rings of the integers and

the rationals, respectively. Moreover, let f be the implicit operation of RCRing given by

Theorem 3.18. As Q is a field, Theorem 3.18 guarantees that fQ is the operation of “taking

weak inverses” in Q. Therefore, we can replicate the argument detailed in Example 6.8,

yielding that RCRing lacks the strong epimorphism surjectivity property, and hence also the

strong Beth definability property. ⊠

Example 6.10 (Distributive lattices). We will show that the variety of distributive lattices

DL lacks the strong epimorphism surjectivity property. For let f be the implicit operation of

“taking relative complements” in distributive lattices and recall that it can be defined by a

pp formula (see Theorem 3.20). Moreover, let B be the four-element Boolean lattice with

universe {0, a, b, 1}, where 0 and 1 are the minimum and the maximum of B, respectively.

Lastly, let A be the subalgebra of B with universe {0, a, 1}. Since b is the complement of a

relative to [0, 1] in B, we have ⟨a, 0, 1⟩ ∈ dom(fB) ∩ A3 and

fB(a, 0, 1) = b /∈ A.

Hence, we can apply Corollary 6.7, obtaining that DL lacks the strong epimorphism surjectivity

property, and thus also the strong Beth definability property. ⊠

The survey [76] contains plenty of examples of classes of algebras with and without the

epimorphism surjectivity property and the intersection property of amalgamation (IPA, for

short), which is equivalent to the strong epimorphism surjectivity property in varieties (see

[76, Prop. 4.5]). Among these examples, we count the following. A semigroup with zero is an

algebra A = ⟨A; ·, 0⟩, where ⟨A; ·⟩ is a semigroup and a0 = 0a = 0 for every a ∈ A. For every

n ⩾ 4 the variety of semigroups with zero satisfying the equation xn ≈ 0 has the epimorphism

surjectivity property, but not its strong version (see [76, p. 89]). Moreover, the varieties of

semilattices and lattices have both the strong epimorphism surjectivity property (see [76,

pp. 99, 102]).

7. Tangible epimorphism surjectivity

The aim of this section is to facilitate the task of determining whether a given class of

algebras has the strong epimorphism surjectivity property. On the one hand, we will show

that this problem can often be settled by considering only finitely generated or finitely

presented algebras.

Theorem 7.1. The following conditions are equivalent for a universal class K:

(i) K has the strong epimorphism surjectivity property;

(ii) for each A ⩽ B ∈ K with A and B finitely generated we have dK(A,B) = A.

In addition, when K is a quasivariety, we may assume that B is finitely presented.

On the other hand, we will provide a criterion for the validity of the strong epimorphism

surjectivity property which applies to a large class of quasivarieties. More precisely, a term t
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of arity ⩾ 3 is a near unanimity term (see, e.g., [73, Sec. 1.2.3]) for a class of algebras K when

K ⊨ x ≈ t(y, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, . . . , x, y).

Intuitively, the term t returns x when its arguments are almost unanimously x. Notably, each

variety with a near unanimity term is congruence distributive (see [92, Thm. 2]), although

the converse need not hold in general (see [92, Lem. 3]). Ternary near unanimity terms play

a prominent role in algebra and are known as majority terms (see, e.g., [21, Def. II.12.8]). As

t(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) is a majority term for every class of algebras with a

lattice reduct, we have the following.

Theorem 7.2. Let K be a class of algebras with a lattice reduct. Then V(K) has a majority

term and is congruence distributive.

We will show that, in the presence of a near unanimity term, the task of determining

whether a quasivariety has the strong epimorphism surjectivity property can be simplified as

follows.

Theorem 7.3. The following conditions are equivalent for a quasivariety K with a near

unanimity term of arity n:

(i) K has the strong epimorphism surjectivity property;

(ii) for each finitely generated A ⩽ B1 × · · · × Bn−1 with B1, . . . ,Bn−1 ∈ Krfsi finitely

generated we have dK(A,B1 × · · · ×Bn−1) = A.

Before proving these results, let us provide an example of how to apply them in practice.

Example 7.4 (Relatively complemented distributive lattices). An algebra ⟨A;∧,∨, r⟩ is a

relatively complemented distributive lattice when ⟨A;∧,∨⟩ is a distributive lattice and r

a ternary operation such that r(a, b, c) is the complement of a relative to the interval

[a∧ b∧ c, a∨ b∨ c] for all a, b, c ∈ A. Notice that if b ⩽ a ⩽ c, then r(a, b, c) is the complement

of a relative to [b, c]. The class of relatively complemented distributive lattices forms a variety,

which we denote by RCDL. We will prove the following.

Theorem 7.5. The varieties of relatively complemented distributive lattices and of Boolean

algebras have the strong epimorphism surjectivity property.

Proof. We will detail the proof for RCDL only, as the case of Boolean algebras is analogous

and well known (see, e.g., [76, p. 103]). Let D2 be the unique relatively complemented

distributive lattice with universe {0, 1} and 0 < 1. We begin with the following observation.

Claim 7.6. We have RCDLfsi = I(D2).

Proof of the Claim. Since every two-element algebra is finitely subdirectly irreducible, we

obtain I(D2) ⊆ RCDLfsi. To prove the other inclusion, consider A ∈ RCDLfsi. Let A− be the

lattice reduct of A. To conclude the proof, it will be enough to show that Con(A) = Con(A−).

For suppose that this is the case. Then, as A is finitely subdirectly irreducible, we can apply

Proposition 2.10, obtaining that idA is meet irreducible in Con(A). Since Con(A) = Con(A−),

this yields that idA is also meet irreducible in Con(A−). Consequently, Proposition 2.10
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guarantees that A− is a finitely subdirectly irreducible distributive lattice. Up to isomorphism,

the only such lattice is the lattice reduct of D2. Hence, we conclude that A ∼= D2, as desired.

Therefore, it only remains to show that Con(A) = Con(A−). As A− is a reduct of A,

we have Con(A) ⊆ Con(A−). Then we proceed to prove the other inclusion. Consider

θ ∈ Con(A−). To prove that θ ∈ Con(A), let ⟨a1, a2⟩, ⟨b1, b2⟩, ⟨c1, c2⟩ ∈ θ. We need to

show that ⟨rA(a1, b1, c1), r
A(a2, b2, c2)⟩ ∈ θ. To this end, recall from Theorem 3.20 that

“taking relative complements” is a ternary implicit operation f of DL. Moreover, consider the

canonical surjection πθ : A− → A−/θ.

We will prove that for each i ⩽ 2,

⟨ai/θ, bi/θ, ci/θ⟩ ∈ dom(fA−/θ) and fA−/θ(ai/θ, bi/θ, ci/θ) = rA(ai, bi, ci)/θ. (22)

First, observe that ⟨ai, bi, ci⟩ ∈ dom(fA−
) and fA−

(ai, bi, ci) = rA(ai, bi, ci) because A− is the

reduct of the relatively complemented distributive lattice A and f is the implicit operation

of “taking relative complements”. Since f is an operation of DL, it is preserved by the

homomorphism π : A− → A−/θ. Therefore, from ⟨ai, bi, ci⟩ ∈ dom(fA−
) and fA−

(ai, bi, ci) =

rA(ai, bi, ci) it follows that ⟨ai/θ, bi/θ, ci/θ⟩ = ⟨π(ai), π(bi), π(ci)⟩ ∈ dom(fA−/θ) and

fA−/θ(ai/θ, bi/θ, ci/θ) = fA−/θ(π(ai), π(bi), π(ci)) = π(fA−
(ai, bi, ci))

= π(rA(ai, bi, ci)) = rA(ai, bi, ci)/θ.

This establishes (22). As a1/θ = a2/θ, b1/θ = b2/θ, and c1/θ = c2/θ by assumption, this

implies

rA(a1, b1, c1)/θ = fA−/θ(a1/θ, b1/θ, c1/θ) = fA−/θ(a2/θ, b2/θ, c2/θ) = rA(a2, b2, c2)/θ,

that is, ⟨rA(a1, b1, c1), r
A(a2, b2, c2)⟩ ∈ θ, as desired. ⊠

Now, we prove that RCDL has the strong epimorphism surjectivity property. As RCDL has

a lattice reduct, it possesses a majority term. Therefore, we can apply Theorem 7.3, obtaining

that RCDL has the strong epimorphism surjectivity property if and only if for each finitely

generated A ⩽ B ×C with B,C ∈ RCDLfsi finitely generated we have dK(A,B ×C) = A.

Together with Claim 7.6 the latter specializes to the following: for each A ⩽ D2 ×D2 we

have dK(A,D2 ×D2) = A.

To prove this, consider A ⩽ D2 ×D2. By inspection for each b ∈ (D2 ×D2) − A one can

find an endomorphism h of D2 ×D2 such that id↾A = h↾A and id(b) ̸= g(b), where id is the

identity map on D2 ×D2. Hence, we conclude that dK(A,D2 ×D2) = A. ⊠

We are now ready to prove Theorem 7.1.

Proof. The implication (i)⇒(ii) holds by Proposition 6.6. To prove the implication (ii)⇒(i),

we reason by contraposition. Suppose that K lacks the strong epimorphism surjectivity

property. In view of Corollary 6.7, there exist C ⩽ D ∈ K, an implicit operation f of K

defined by a pp formula φ(x1, . . . , xn, y), and

⟨c1, . . . , cn⟩ ∈ dom(fD) ∩ Cn with fD(c1, . . . , cn) /∈ C. (23)
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As φ defines an implicit operation of K, it also defines an implicit operation g of Q(K) by

Corollary 3.11. As both f and g are defined by φ and D ∈ K ⊆ Q(K), we have fD = gD.

We will make use of this observation without further notice.

Claim 7.7. There exist a finitely presented member B of Q(K) and A ⩽ B finitely generated

with elements a1, . . . , an ∈ A and a homomorphism h : B → C satisfying the following

conditions:

(i) ⟨a1, . . . , an⟩ ∈ dom(gB) ∩ An and gB(a1, . . . , an) /∈ A;

(ii) h(a1) = c1, . . . , h(an) = cn, h(gB(a1, . . . , an)) = fD(c1, . . . , cn), and h[A] ⊆ C.

Proof of the Claim. Define B = TQ(K)(φ), a1 = x1/θ(φ), . . . , an = xn/θ(φ), and A =

SgB(a1, . . . , an) (for the definition of TQ(K)(φ) see Definition 4.12). Clearly, A is a finitely

generated subalgebra of B. Moreover, from Proposition 4.13(i) it follows that B is finitely

presented in Q(K) and that

⟨a1, . . . , an⟩ ∈ dom(gB) ∩ An and gB(a1, . . . , an) = y/θ(φ). (24)

Now, recall from (23) that ⟨c1, . . . , cn⟩ ∈ dom(fD) = dom(gD). Together with D ∈ K ⊆ Q(K)

and Proposition 4.13(ii), this guarantees the existence of a homomorphism h : B → D such

that

h(a1) = c1, . . . , h(an) = cn, and h(y/θ(φ)) = gD(c1, . . . , cn) = fD(c1, . . . , cn).

From the right hand sides of the above display and (24) it follows that h(gB(a1, . . . , an)) =

fD(c1, . . . , cn).

Therefore, it only remains to prove that gB(a1, . . . , an) /∈ A and h[A] ⊆ C. To this end,

recall that A is generated by a1, . . . , an and that c1, . . . , cn belong to the subalgebra C

of D. Therefore, from the left hand side of the above display it follows that h[A] ⊆ C.

Moreover, from the right hand side of (23) and h(gB(a1, . . . , an)) = fD(c1, . . . , cn) we obtain

h(gB(a1, . . . , an)) /∈ C. Together with h[A] ⊆ C, this yields gB(a1, . . . , an) /∈ A. ⊠

Let A, B, and a1, . . . , an be as in Claim 7.7. We have two cases: either K is a quasivariety

or not. We begin with the case where K is a quasivariety. Then K = Q(K). Therefore,

B is a finitely presented member of K and A ⩽ B finitely generated. From Claim 7.7(i)

and Theorem 4.10 it follows that gB(a1, . . . , an) ∈ dK(A,B) − A, whence dK(A,B) ̸= A, as

desired.

It only remains to consider the case where K is not a quasivariety. Then let h : B → D be

the homomorphism given by Claim 7.7. Define A′ = h[A] and B′ = h[B]. As D ∈ K and K is

a universal class by assumption, from A′ ⩽ B′ ⩽ D it follows that A′,B′ ∈ K. Furthermore,

since A and B are finitely generated by Claim 7.7, the algebras A′ and B′ are also finitely

generated. By condition (i) of the same claim we have B ⊨ φ(a1, . . . , an, g
B(a1, . . . , an)).

As h : B → B′ is a homomorphism and φ a pp formula, we can apply Theorem 1.1(ii),

obtaining B′ ⊨ φ(h(a1), . . . , h(an), h(gB(a1, . . . , an))). By Claim 7.7(ii) this amounts to

B′ ⊨ φ(c1, . . . , cn, f
D(c1, . . . , cn)), that is,

⟨c1, . . . , cn⟩ ∈ dom(fB′
) and fB′

(c1, . . . , cn) = fD(c1, . . . , cn).
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Recall from (23) that fD(c1, . . . , cn) /∈ C. Together with the right hand side of the

above display and the fact that A′ = h[A] ⊆ C (see condition (ii) of Claim 7.7), this yields

fB′
(c1, . . . , cn) /∈ A′. On the other hand, from a1, . . . , an ∈ A and h(ai) = ci for each i ⩽ n

(see Claim 7.7(ii)) it follows that c1, . . . , cn ∈ h[A] = A′. Hence, the left hand side of the above

display can be improved to ⟨c1, . . . , cn⟩ ∈ dom(fB′
) ∩ (A′)n. As a consequence, we can apply

Theorem 4.10, obtaining φB′
(c1, . . . , cn) ∈ dK(A′,B′) − A′, whence dK(A′,B′) ̸= A′. ⊠

Now, we proceed to prove Theorem 7.3. We will make use of the next concept from [29,

Def. 4.4].

Definition 7.8. Let K be a quasivariety, A ∈ K, and θ ∈ ConK(A). Given a positive integer

n, we say that θ is n-irreducible in ConK(A) when θ = θ1∩ · · · ∩ θn with θ1, . . . , θn ∈ ConK(A)

implies θ = θ1 ∩ · · · ∩ θi−1 ∩ θi+1 ∩ · · · ∩ θn for some i ⩽ n. When K is clear from the context,

we will simply say that θ is n-irreducible.

Notice that the only 1-irreducible K-congruence of A is A×A. Moreover, a K-congruence θ

of A is 2-irreducible if and only if either θ ∈ IrrK(A) or θ = A× A. We rely on the following

observation (see [29, Prop. 4.5]).

Proposition 7.9. Let K be a quasivariety, A ∈ K, and θ ∈ ConK(A) n-irreducible. Then

there exist ϕ1, . . . , ϕn−1 ∈ IrrK(A) such that θ = ϕ1 ∩ · · · ∩ ϕn−1.

We recall that, for A ⩽ B and ϕ ∈ Con(B), we denote by A/ϕ the subalgebra of B/ϕ

with universe {a/ϕ ∈ B/ϕ : a ∈ A}. We will need the following easy consequence of Zorn’s

Lemma (see the proof of [29, Prop. 3.7]).

Proposition 7.10. Let K be a quasivariety, A ⩽ B ∈ K, and b ∈ B − A. There exists

ϕ ∈ ConK(B) such that b/ϕ /∈ A/ϕ and for each θ ∈ ConK(B/ϕ)−{idB/ϕ} there exists a ∈ A

such that ⟨a/ϕ, b/ϕ⟩ ∈ θ.

We are now ready to prove Theorem 7.3. We follow a strategy similar to the one used to

establish an analogous result [29, Thm. 4.3] in the setting of epimorphisms between finitely

generated algebras.

Proof. As the implication (i)⇒(ii) is straightforward, we only detail the implication (ii)⇒(i).

To this end, we reason by contraposition. Suppose that K lacks the strong epimorphism

surjectivity property. By Theorem 7.1 there exist A ⩽ B ∈ K with A and B finitely

generated and some b ∈ dK(A,B) − A.

Claim 7.11. We may assume that for each θ ∈ ConK(B) − {idB} there exists a ∈ A such

that ⟨a, b⟩ ∈ θ.

Proof of the Claim. As A ⩽ B ∈ K and b ∈ dK(A,B) − A ⊆ B − A, we can apply Proposi-

tion 7.10, obtaining ϕ ∈ ConK(B) satisfying the following requirements: b/ϕ ∈ B/ϕ− A/ϕ

and for each θ ∈ ConK(B/ϕ) − {idB/ϕ} there exists a ∈ A such that ⟨a/ϕ, b/ϕ⟩ ∈ θ.

Clearly, A/ϕ ⩽ B/ϕ is a proper subalgebra. Moreover, A/ϕ and B/ϕ are finitely generated

members of K because so are A and B by assumption and ϕ ∈ ConK(B). Corollary 4.6(ii)

implies that b/ϕ ∈ dK(A/ϕ,B/ϕ). As b/ϕ /∈ A/ϕ, we obtain b/ϕ ∈ dK(A/ϕ,B/ϕ) − A/ϕ.
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Therefore, we may assume that ϕ = idB (otherwise we replace A and B by A/ϕ and B/ϕ,

respectively).

When coupled with the assumption that ϕ = idB, the fact that for each θ ∈ ConK(B/ϕ) −
{idB/ϕ} there exists a ∈ A such that ⟨a/ϕ, b/ϕ⟩ ∈ θ implies that for each θ ∈ ConK(B)−{idB}
there exists a ∈ A such that ⟨a, b⟩ ∈ θ. ⊠

We will rely on the next observation.

Claim 7.12. The congruence idB is n-irreducible in ConK(B).

Proof of the Claim. Let θ1, . . . , θn ∈ ConK(B) be such that idB = θ1 ∩ · · · ∩ θn. Let also

ϕi = θ1 ∩ · · · ∩ θi−1 ∩ θi+1 · · · ∩ θn for each i ⩽ n. We will show that ϕi = idB for some i ⩽ n.

Suppose the contrary, with a view to contradiction. Claim 7.11 yields a1, . . . , an ∈ A such

that ⟨ai, b⟩ ∈ ϕi for every i ⩽ n. By assumption K has a near unanimity term t(x1, . . . , xn).

We will prove that

⟨tB(a1, . . . , an), b⟩ ∈ θj

for every j ⩽ n. To this end, consider j ⩽ n. As ⟨ai, b⟩ ∈ ϕi ⊆ θj for every i ⩽ n such that

i ̸= j, we obtain ⟨tB(a1, . . . , an), tB(b, . . . , b, aj, b, . . . , b)⟩ ∈ θj. Furthermore, since t is a near

unanimity term, we have tB(b, . . . , b, aj, b, . . . , b) = b. Hence, ⟨tB(a1, . . . , an), b⟩ ∈ θj. This

establishes the above display. Together with the assumption that idB = θ1 ∩ · · · ∩ θn, this

implies b = tB(a1, . . . , an). As a1, . . . , an ∈ A and A ⩽ B, we conclude that b ∈ A, which is

false. Hence, idB is n-irreducible. ⊠

In view of Claim 7.12 and Proposition 7.9, there exist θ1, . . . , θn−1 ∈ IrrK(B) such that

idB = θ1∩· · ·∩θn−1. Therefore, we can apply Proposition 2.7 obtaining a subdirect embedding

h : B → B/θ1 × · · · × B/θn−1. Let Bi = B/θi for each i ⩽ n − 1. By replacing A and

B by their isomorphic images h[A] and h[B], respectively, we may assume that A ⩽
B ⩽ B1 × · · · ×Bn−1. Notice that each Bi = B/θ is finitely generated because so is B.

Furthermore, from Proposition 2.10 and θi ∈ IrrK(B) it follows that Bi ∈ Krfsi. Lastly, as

b ∈ dK(A,B) − A and B ⩽ B1 × · · · ×Bn−1, Corollary 4.6(ii) allows us to conclude that

b ∈ dK(A,B1 × · · · ×Bn−1) − A. Hence, dK(A,B1 × · · · ×Bn−1) ̸= A. ⊠

The literature on epimorphisms contains two variants of Theorem 7.3 in which the class

K is required to be an arithmetical variety with the property that the class of its finitely

subdirectly irreducible members is closed under ultraproducts and nontrivial subalgebras [23,

Thm. 6.8] or only a congruence permutable variety [29, Thm. 5.3]. The first variant deals

with the demand that all K-epimorphisms be surjective, while the second with the weaker

demand that all K-epimorphisms between finitely generated algebras be surjective called

the weak epimorphism surjectivity property. In both cases, the conclusion is that failures of

the relevant property are witnessed by counterexamples of the form A ⩽ B where B is a

finitely subdirectly irreducible member of K. The possibility of obtaining similar results for

the strong epimorphism surjectivity property is prevented by the following example. However,

we will show in Corollary 7.16 that, under the amalgamation property, the above mentioned

result for congruence permutable varieties becomes available in the context of the strong

epimorphism surjectivity property as well.
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Example 7.13 (Heyting algebras). A Heyting algebra is an algebra ⟨A;∧,∨,→, 0, 1⟩ which

comprises a bounded distributive lattice ⟨A;∧,∨, 0, 1⟩ and a binary operation → (called

implication) such that for all a, b, c ∈ A we have

a ∧ b ⩽ c ⇐⇒ a ⩽ b→ c.

This means that b→ c is the largest element d ∈ A such that d∧ (b→ c) ⩽ c (see [7, p. 173]).

As a consequence, Heyting algebras are uniquely determined by their lattice reduct. In

particular, every finite distributive lattice A can be expanded uniquely to a Heyting algebra

by letting 0 and 1 be the minimum and maximum of A, respectively, and defining

a→ b = max{c ∈ A : a ∧ c ⩽ b} for all a, b ∈ A.

From a logical standpoint, the importance of Heyting algebras derives from the fact that they

algebraize the intuitionistic propositional logic (see, e.g., [100, Ch. IX]).

Let C be the five-element chain, viewed as a Heyting algebra. Then V(C) is an arithmetical

variety whose class of finitely subdirectly irreducible members is closed under nontrivial

subalgebras and ultraproducts (see, e.g., [21, p. 80] and [40, p. 2 & Thm. 2.3]).

While it is known that V(C) lacks the strong epimorphism surjectivity property (see [88,

Thm. 4.2]), it is impossible to find counterexamples to this property of the form A ⩽ B,

where B is a finitely subdirectly irreducible member of V(C), for in this situation we always

have dV(C)(A,B) = A. ⊠

The next result is well known (see, e.g., [14, Thm. 1.3]). We provide a novel and short

proof using the characterization of dominions in the presence of the amalgamation property

established in Corollary 4.14.

Theorem 7.14. Let K be a quasivariety with the amalgamation property. Then K has the

strong epimorphism surjectivity property if and only if it has the weak epimorphism surjectivity

property.

Proof. The implication from left to right is straightforward. So, let us assume that K

has the weak epimorphism surjectivity property. We will show that K has the strong

epimorphism surjectivity property using Proposition 6.6. To this end, consider A ⩽ B ∈ K

and b ∈ domK(A,B). Since K has the amalgamation property, by Corollary 4.14 there

exist f ∈ impeq(K) and ⟨a1, . . . , an⟩ ∈ dom(fB) ∩ An such that fB(a1, . . . , an) = b. Let

A′ = SgA(a1, . . . , an) and B′ = SgB(a1, . . . , an, b). Since f is defined by a conjunction of

equations, ⟨a1, . . . , an⟩ ∈ dom(fB′
)∩(A′)n and fB′

(a1, . . . , an) = b. So, Corollary 4.14 implies

that b ∈ dK(A′,B′). As B′ = SgB(a1, . . . , an, b) and a1, . . . , an, b ∈ dK(A′,B′), we obtain

dK(A′,B′) = B′. Therefore, the inclusion map A′ → B′ is an epimorphism. Since A′,B′ are

finitely generated members of K and K has the weak epimorphism surjectivity property, it

follows that A′ = B′, and hence b ∈ B′ = A′ ⊆ A. We have shown that domK(A,B) = A.

Thus, K has the strong epimorphism surjectivity property. ⊠

Given a class of algebras K closed under subalgebras and B ∈ K, we say that a subalgebra

A of B is K-epic when the inclusion map A → B is a K-epimorphism. In this case, K has the

epimorphism surjectivity property if and only if every A ∈ K lacks proper K-epic subalgebras.
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We rely on the following result, which is an immediate consequence of [29, Thm. 5.3] and the

proof of [93, Thm. 5.4].

Theorem 7.15. Let K be a congruence permutable variety. Then K has the weak epimorphism

surjectivity property if and only if the finitely generated members of Kfsi lack proper K-epic

finitely generated subalgebras.

As mentioned above, the amalgamation property allows us to obtain a result similar to [23,

Thm. 6.8] and [29, Thm. 5.3] for the strong epimorphism surjectivity property in congruence

permutable varieties.

Corollary 7.16. Let K be a congruence permutable variety with the amalgamation property.

Then K has the strong epimorphism surjectivity property if and only if every finitely generated

B ∈ Kfsi lacks proper K-epic subalgebras.

Proof. The implication from left to right is straightforward. On the other hand, if every

finitely generated B ∈ Kfsi lacks proper K-epic subalgebras, then Theorem 7.15 guarantees

that K has the weak epimorphism surjectivity property, which by Theorem 7.14 implies that

K has the strong epimorphism surjectivity property as well. ⊠

The join of a family of varieties K1, . . . ,Kn is the least variety containing them, namely,

V(K1 ∪ · · · ∪ Kn). While the weak and the strong epimorphism surjectivity properties need

not be preserved by joins of varieties, in special cases they are, as we proceed to show.

Theorem 7.17. Let K be an arithmetical variety. If K is the join of finitely many varieties

with the weak epimorphism surjectivity property, then it has the weak epimorphism surjectivity

property.

Proof. Assume that K = V(K1∪· · ·∪Kn), where each Ki is a variety with the weak epimorphism

surjectivity property. Suppose, with a view to contradiction, that K lacks this property. By

Theorem 7.15 this implies that there exists a finitely generated B ∈ Kfsi with a finitely

generated subalgebra A ⩽ B that is proper and K-epic. Applying Jónsson’s Theorem 2.12,

we obtain that B ∈ HSPu(K1 ∪ · · · ∪ Kn). By [11, Thm. 5.6] we have Pu(K1 ∪ · · · ∪ Kn) =

Pu(K1) ∪ · · · ∪ Pu(Kn). Therefore, B ∈ HSPu(K1) ∪ · · · ∪ HSPu(Kn) ⊆ K1 ∪ · · · ∪ Kn. Then

B ∈ Ki for some i ⩽ n. But Ki has the weak epimorphism surjectivity property by assumption,

whence A ⩽ B cannot be a Ki-epic subalgebra. As Ki ⊆ K, in particular it follows that

A ⩽ B cannot be a K-epic subalgebra either. But this contradicts the assumption and thus

completes the proof. ⊠

The following is an immediate consequence of Theorems 7.14 and 7.17.

Corollary 7.18. Let K be an arithmetical variety with the amalgamation property. If K is

the join of finitely many varieties with the weak epimorphism surjectivity property, then it

has the strong epimorphism surjectivity property.
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8. Extendable implicit operations

The implicit operations f of a class of algebras K behave well with respect to extensions,

in the sense that if A ⩽ B and A,B ∈ K, then fB extends fA. More precisely, we have the

following.

Proposition 8.1. Let f be an implicit operation of a class of algebras K. For all A,B ∈ K

with A ⩽ B the partial function fB extends fA, in the sense that for all ⟨a1, . . . , an⟩ ∈
dom(fA) we have

⟨a1, . . . , an⟩ ∈ dom(fB) and fA(a1, . . . , an) = fB(a1, . . . , an).

Proof. Let i : A → B be the inclusion map and consider ⟨a1, . . . , an⟩ ∈ dom(fA). Since i is a

homomorphism, A,B ∈ K, and f an implicit operation of K, we obtain

⟨i(a1), . . . , i(an)⟩ ∈ dom(fB) and i(fA(a1, . . . , an)) = fB(i(a1), . . . , i(an)).

As i is the inclusion map, this yields the desired conclusion. ⊠

Let f be an implicit operation of a class of algebras K. While Proposition 8.1 guarantees

that fB extends fA whenever A,B ∈ K and A ⩽ B, there is no reason to expect that we

can extend fA to a total function in this way. More precisely, there may be no extension B

of A in K for which fB is a total function. This makes the following definition attractive.

Definition 8.2. Let M and K be classes of algebras with M ⊆ K. An n-ary implicit operation

f of K is said to be extendable relative to M when for all A ∈ M and a1, . . . , an ∈ A there

exists B ∈ K such that

A ⩽ B and ⟨a1, . . . , an⟩ ∈ dom(fB).

The set of implicit operations of K that are extendable relative to M will be denoted by

ext(M,K). We also let

extpp(M,K) = ext(M,K) ∩ imppp(K) and exteq(M,K) = ext(M,K) ∩ impeq(K).

When M = K, we write ext(K), extpp(K), and exteq(K) instead of ext(K,K), extpp(K,K), and

exteq(K,K). Moreover, when an implicit operation is in ext(K), we simply say it is extendable.

Remark 8.3. Let M1,M2,K1,K2 be classes of algebras with M1 ⊆ M2 ⊆ K2 and K1 ⊆ K2.

Then the definition of an extendable implicit operation immediately yields that ext(M2,K1) ⊆
ext(M1,K2). In particular, if M and K are classes of algebras such that M ⊆ K, then

ext(K) ⊆ ext(M,K). ⊠

The relation between extendable implicit operations and the idea of “extending partial

functions to total ones” is made precise by the next result.

Theorem 8.4. Let K be a universal class and A ∈ K. Then there exists B ∈ K with A ⩽ B

such that fB is total for each f ∈ ext(K). When, in addition, K is a quasivariety and A ∈ Krsi,

the algebra B can be chosen in Krsi.

The proof of Theorem 8.4 hinges on the following observation.
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Proposition 8.5. Let K be a quasivariety, A ∈ Krsi, and B ∈ K with A ⩽ B. Then there

exist C ∈ Krsi with A ⩽ C and a surjective homomorphism h : B → C.

Proof. By the Subdirect Decomposition Theorem 2.9 there exists a subdirect embedding

g : B →
∏

i∈I Bi for some family {Bi : i ∈ I} ⊆ Krsi. From A ⩽ B it follows that

g : A →
∏

i∈I pi[g[A]] is also a subdirect embedding. As A ∈ Krsi, there exists j ∈ I such

that pj ◦ g : A → pj[g[A]] is an isomorphism. Together with pj[g[A]] ⩽ Bj, this yields that

pj ◦ g : A → Bj is an embedding. Since Krsi is closed under I, there exist C ∈ Krsi isomorphic

to Bj such that A ⩽ C and a surjective homomorphism h : B → C (the latter is obtained

by composing pj ◦ g : B → Bj with the isomorphism between Bj and C). ⊠

We are now ready to prove Theorem 8.4.

Proof. We begin with the following observation.

Claim 8.6. Let A ∈ K. Then there exists B ∈ K with A ⩽ B such that An ⊆ dom(fB) for

each n-ary f ∈ ext(K).

Proof of the Claim. Recall from Theorem 3.9 that each implicit operation f of K is defined

by an existential positive formula φf . Then consider the following set of formulas in the

language of K expanded with fresh constants {ca : a ∈ A} for the elements of A:

Σ = {∃yφf (ca1 , . . . , can , y) : n ∈ N, a1, . . . , an ∈ A, and f ∈ ext(K) is n-ary}.

Moreover, let Γ be a set of axioms for K (which is an elementary class by assumption) and

define

∆ = diag(A) ∪ Σ ∪ Γ.

We will prove that ∆ has a model.

By the Compactness Theorem 1.2 it suffices to show that so does each finite subset of ∆.

To this end, consider a1, . . . , ak ∈ A and f1, . . . , fm ∈ ext(K) such that fi has arity ni for each

i ⩽ m. Moreover, for each i ⩽ m let ai1, . . . , a
i
ni

∈ {a1, . . . , ak}. We need to prove that the

following set has a model:

diag(SgA(a1, . . . , ak)) ∪ {∃yφfi(cai1 , . . . , caini
, y) : 1 ⩽ i ⩽ m} ∪ Γ. (25)

To this end, we shall define a sequence A0 ⩽ A1 ⩽ · · · ⩽ Am of members of K. First, let

A0 = SgA(a1, . . . , ak). Clearly, A0 ∈ K because A0 ⩽ A ∈ K and K is a universal class by

assumption. Then suppose that the sequence A0 ⩽ · · · ⩽ Ai has already been defined for

i < m. Since A0 ⩽ Ai we have ai+1
1 , . . . , ai+1

ni+1
∈ {a1, . . . , ak} ⊆ A0 ⊆ Ai. As fi+1 ∈ ext(K)

is ni+1-ary and Ai ∈ K, there exists Ai+1 ∈ K such that ⟨ai+1
1 , . . . , ai+1

ni+1
⟩ ∈ dom(f

Ai+1

i+1 ).

Clearly, A0 ⩽ · · · ⩽ Ai+1 is still a sequence of members of K. This concludes the definition

of A0 ⩽ A1 ⩽ · · · ⩽ Am.

Observe that SgA(a1, . . . , ak) = A0 ⩽ Am. Then let A+
m be the expansion of Am with

constants in {ca : a ∈ SgA(a1, . . . , ak)} in which each ca is interpreted as a. We will prove

that A+
m is a model of the set of formulas in (25). From SgA(a1, . . . , ak) = A0 ⩽ Am and the

Diagram Lemma 2.20 it follows that A+
m is a model of diag(SgA(a1, . . . , ak)). Furthermore,

A+
m ⊨ Γ because Am ∈ K and Γ axiomatizes K. Therefore, it only remains to show that
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A+
m ⊨ ∃yφfi(cai1 , . . . , caini

, y) for each i ⩽ m. As each ca is interpreted as a ∈ A0 ⊆ Am in A+
m,

this amounts to

Am ⊨ ∃yφfi(a
i
1, . . . , a

i
ni
, y) for each i ⩽ m.

Consider i ⩽ m. The construction of Ai guarantees that ⟨ai1, . . . , aini
⟩ ∈ dom(fAi

i ). As

fi is defined by φfi , this yields Ai ⊨ φfi(a
i
1, . . . , a

i
ni
, fAi

i (ai1, . . . , a
i
ni

)). Since Ai ⩽ Am

and φfi is an existential positive formula, we can apply Theorem 1.1(i), obtaining Am ⊨
φfi(a

i
1, . . . , a

i
ni
, fAi

i (ai1, . . . , a
i
ni

)), whence Am ⊨ ∃yφfi(a
i
1, . . . , a

i
ni
, y). Thus, we conclude that

A+
m is a model of the set of formulas in (25).

As we mentioned, from the fact that the set of formulas in (25) has a model it follows that

∆ also has a model B+. Let B be the LK-reduct of B+. Since B+ is a model of Γ, so is B.

Together with the assumption that Γ axiomatizes K, this yields B ∈ K. Furthermore, as B+

is a model of diag(A), we can apply the Diagram Lemma 2.20, obtaining that A embeds into

B via the map that sends a to the interpretation of ca in B+. Since K is an elementary class,

it is closed under I. Therefore, we may assume that A ⩽ B and that ca is interpreted as a in

B+.

To conclude the proof of the claim it only remains to show that An ⊆ dom(fB) for each

n-ary f ∈ ext(K). To this end, consider an n-ary f ∈ ext(K) and a1, . . . , an ∈ A. As B+

is a model of Σ, we obtain B ⊨ ∃yφf(a1, . . . , an, y). Since φf defines f , this amounts to

⟨a1, . . . , an⟩ ∈ dom(fB). ⊠

Now, we proceed to prove the first part of the statement of Theorem 8.4. Consider A ∈ K.

We will define a sequence {Ai : i ∈ N} of members of K. First, let A0 = A. Then suppose

Ai ∈ K has already been defined. By Claim 8.6 there exists Ai+1 ∈ K with Ai ⩽ Ai+1

and An
i ⊆ dom(fAi+1) for each n-ary f ∈ ext(K). By definition the sequence {Ai : i ∈ N}

constructed in this way is such that

A = A0 ⩽ A1 ⩽ A2 ⩽ · · ·

Now, as K is a universal class, it is closed under unions of chains of algebras by Proposi-

tion 2.4. Therefore, the union B of the chain in the above display belongs to K. Furthermore,

A = A0 ⩽ B. To conclude the proof of the first part of the statement, it only remains

to show that fB is total for each f ∈ ext(K). To this end, let f ∈ ext(K) be n-ary and

b1, . . . , bn ∈ B. As B is the union of the chain in the above display, there exists i ∈ N such

that b1, . . . , bn ∈ Ai. By the definition of Ai+1 we have ⟨b1, . . . , bn⟩ ∈ An
i ⊆ dom(fAi+1). As

Ai+1 ⩽ B, we can apply Proposition 8.1, obtaining ⟨b1, . . . , bn⟩ ∈ dom(fB). Hence, fB is a

total operation, as desired.

To prove the second part of the statement of Theorem 8.4, suppose that K is a quasivariety

and consider A ∈ Krsi. In view of the first part of the statement of Theorem 8.4, there

exists B ∈ K with A ⩽ B such that fB is total for each f ∈ ext(K). By Proposition 8.5

there also exist C ∈ Krsi with A ⩽ C and a surjective homomorphism h : B → C. To

conclude the proof, it only remains to show that fC is total for each f ∈ ext(K). To this

end, consider an n-ary f ∈ ext(K) and c1, . . . , cn ∈ C. Since h : B → C is surjective, there

exist b1, . . . , bn ∈ B such that h(bj) = cj for each j ⩽ n. Recall that fB is total because
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f ∈ ext(Kfg,K). Therefore, ⟨b1, . . . , bn⟩ ∈ dom(fB). As f is an implicit operation and h a

homomorphism, we conclude that ⟨c1, . . . , cn⟩ = ⟨h(b1), . . . , h(bn)⟩ ∈ dom(fC). ⊠

The following is a consequence of Theorem 8.4.

Corollary 8.7. Given a universal class K, the classes ext(K) and extpp(K) are closed under

composition.

Proof. Consider an n-ary g ∈ ext(K) and m-ary f1, . . . , fn ∈ ext(K). Let A ∈ K. By

Theorem 8.4 there exists B ∈ K with A ⩽ B such that gB, fB
1 , . . . , f

B
n are total. It then

follows from the definition of composition that g(f1, . . . ,n )B is also total. Therefore, ext(K) is

closed under composition. As imppp(K) is closed under composition by Proposition 3.13, we

obtain that extpp(K) is also closed under composition because extpp(K) = ext(K)∩imppp(K). ⊠

Example 8.8 (Cancellative commutative monoids). Recall from Example 4.16 that the class

of cancellative commutative monoids forms a quasivariety, which we denote by CCMon. The

importance of cancellative commutative monoids is due to the following well-known result

(see, e.g., [84, pp. 39–40]).

Theorem 8.9. The quasivariety of cancellative commutative monoids is the class of monoid

subreducts of Abelian groups.

Recall from Theorem 3.7 that “taking inverses” is an implicit operation of the variety of

monoids, definable by the conjunction of equations φ = (x · y ≈ 1) ⊓ (y · x ≈ 1). Clearly, its

restriction to CCMon is an implicit operation of CCMon, which is defined by the equation

x · y ≈ 1. We will prove the following.

Theorem 8.10. Taking inverses is a unary extendable implicit operation of the quasivariety

of cancellative commutative monoids, which, moreover, can be defined by the equation x ·y ≈ 1.

Proof. It suffices to prove that the implicit operation f of “taking inverses” in CCMon is

extendable. To this end, consider A ∈ CCMon and a ∈ A. In view of Theorem 8.9, A is a

subreduct of an Abelian group B. Let C be the monoid reduct of B. Since B is an Abelian

group, C is a cancellative commutative monoid by Theorem 8.9. Therefore, C ∈ CCMon.

Furthermore, a ∈ A ⊆ C has an inverse in C because C is the reduct of a group. Therefore,

a ∈ dom(fC). Hence, we conclude that f is extendable. ⊠

On the other hand, the implicit operation f of “taking inverses” in the variety of all monoids

is not extendable. For suppose the contrary, with a view to contradiction. By Theorem 8.4

this implies that for each monoid A there exists a monoid B such that fB is total, that is,

such that B is the reduct of a group. As a consequence, we obtain that every monoid embeds

into the monoid reduct of a group. But this is false because monoid subreducts of groups

need to be cancellative and noncancellative monoids exist (e.g., full transformation monoids).

We conclude that f is not extendable. An analogous argument shows that the restriction of

f to the variety of commutative monoids is also not extendable. ⊠

The next results simplify the task of proving that an implicit operation is extendable.
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Proposition 8.11. Let K be an elementary class and M ⊆ K. The following conditions hold:

(i) if K ⊆ U(M), then ext(K) = ext(M,K);

(ii) if P(K) ⊆ K ⊆ Q(M), then extpp(K) = extpp(M,K).

Proof. We begin with the following observation.

Claim 8.12. We have ext(M,K) ⊆ ext(Pu(M),K).

Proof of the Claim. Consider f ∈ ext(M,K), A ∈ Pu(M) and a1, . . . , an ∈ A. Then there

exist {Ai : i ∈ I} ⊆ M and an ultrafilter U on I such that A =
∏

i∈I Ai/U . Moreover, there

exist a∗1, . . . , a
∗
n ∈

∏
i∈I Ai such that ai = a∗i /U for each i ⩽ n. Lastly, since f is an implicit

operation of K, it is defined by a formula φ.

As {Ai : i ∈ I} ⊆ M, from the assumptions it follows that for each i ∈ I there exists

Bi ∈ K with Ai ⩽ Bi such that ⟨a∗1(i), . . . , a∗n(i)⟩ ∈ dom(fBi). Since φ defines f , this yields

Bi ⊨ ∃yφ(a∗1(i), . . . , a
∗
n(i), y) for each i ∈ I. Let B =

∏
i∈I Bi/U . By  Loś’ Theorem 1.6 we

have

B ⊨ ∃yφ(a∗1/U, . . . , a
∗
n/U, y).

Observe that B ∈ K because {Bi : i ∈ I} ⊆ K and K is an elementary class by assumption

and, therefore, closed under Pu. Together with the fact that φ defines f and the above display,

this yields ⟨a∗1/U, . . . , a∗n/U⟩ ∈ dom(fB). Lastly, recall that Ai ⩽ Bi for each i ∈ I. As a

consequence, the map h : A → B defined by the rule h(a/U) = a/U is an embedding and

⟨h(a1), . . . , h(an)⟩ = ⟨h(a∗1/U), . . . , h(a∗n/U)⟩ = ⟨a∗1/U, . . . , a∗n/U⟩ ∈ dom(fB).

As K is closed under I (because it is an elementary class), we may assume that h : A → B

is the inclusion map. Therefore, we obtain that A ⩽ B ∈ K and ⟨a1, . . . , an⟩ ∈ dom(fB), as

desired. ⊠

(i): Suppose that K ⊆ U(M). The inclusion from left to right follows from Remark 8.3. To

prove the other inclusion consider f ∈ ext(M,K), A ∈ K, and a1, . . . , an ∈ A. By Theorem 2.2

we have U(M) = ISPu(M). Together with A ∈ K ⊆ U(M), this yields A ∈ ISPu(M). Therefore,

there exist B ∈ Pu(M) and an embedding h : A → B. By Claim 8.12 there exists also C ∈ K

such that B ⩽ C and ⟨h(a1), . . . , h(an)⟩ ∈ dom(fC).

Since C ∈ K and K is closed under I, we may assume that h : A → C is the inclusion

map. Consequently, we obtain that A ⩽ B ⩽ C ∈ K and ⟨a1, . . . , an⟩ ∈ dom(fC). Hence,

we conclude that f is extendable.

(ii): Suppose that P(K) ⊆ K ⊆ Q(M). The inclusion from left to right follows from

Remark 8.3. To prove the other inclusion consider f ∈ extpp(M,K), A ∈ K, and a1, . . . , an ∈ A.

Assume that f is defined by a pp formula φ. By Theorem 2.2 we have Q(M) = ISPPu(M).

Together with A ∈ K ⊆ Q(M), this yields A ∈ ISPPu(M). Therefore, there exist {Bi :

i ∈ I} ⊆ Pu(M) and an embedding h : A →
∏

i∈I Bi. By Claim 8.12 there exists also

{Ci : i ∈ I} ⊆ K such that Bi ⩽ Ci and ⟨pi(h(a1)), . . . , pi(h(an))⟩ ∈ dom(fCi) for each i ∈ I.

Let C =
∏

i∈I Ci. From {Ci : i ∈ I} ⊆ K and the assumption that P(K) ⊆ K it

follows that C ∈ K. Furthermore,
∏

i∈I Bi ⩽ C because Bi ⩽ Ci for each i ∈ I. There-

fore, h : A →
∏

i∈I Bi can be viewed as an embedding h : A → C. Lastly, recall that
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⟨pi(h(a1)), . . . , pi(h(an))⟩ ∈ dom(fCi) for each i ∈ I. As φ defines f , this amounts to

Ci ⊨ ∃yφ(pi(h(a1)), . . . , pi(h(an)), y) for each i ∈ I. As φ is a pp formula by assumption,

we can apply Theorem 1.1(ii) to the definition of C, obtaining C ⊨ ∃yφ(h(a1), . . . , h(an), y).

Since C ∈ K, this amounts to ⟨h(a1), . . . , h(an)⟩ ∈ dom(fC).

Since C ∈ K and K is closed under I, we may assume that h : A → C is the inclusion map.

Consequently, we obtain that A ⩽
∏

i∈I Bi ⩽ C ∈ K and ⟨a1, . . . , an⟩ ∈ dom(fC). Hence, we

conclude that f is extendable. ⊠

Recall that, given a class K of algebras, we denote the class of finitely generated members

of K by Kfg.

Theorem 8.13. The following conditions hold for a class K of algebras:

(i) if K is a universal class, then ext(K) = ext(Kfg,K);

(ii) if K is a quasivariety, then extpp(K) = extpp(K
fg
rsi,K).

Proof. (i): Let K be a universal class and recall from Proposition 2.15 that K = U(Kfg).

Therefore, K is elementary and Kfg ⊆ K ⊆ U(Kfg). Consequently, we can apply Proposition

8.11(i) to the case where M = Kfg, obtaining ext(K) = ext(Kfg,K).

(ii): The inclusion from left to right is straightforward. To prove the other inclusion,

observe that Proposition 2.16 guarantees that K = Q(Kfg
rsi). Moreover, P(K) ⊆ K because

K is a quasivariety. Therefore, we can apply Proposition 8.11(ii), obtaining extpp(K) =

extpp(K
fg
rsi,K). ⊠

Corollary 8.14. A pp formula φ(x1, . . . , xn, y) defines an extendable implicit operation of a

quasivariety K if and only if for each A ∈ Kfg
rsi there exists B ∈ K with A ⩽ B such that for

all a1, . . . , an ∈ B there exists a unique b ∈ B such that B ⊨ φ(a1, . . . , an, b). The equivalence

still holds if we require B to be a member of Krsi.

Proof. The implication from left to right and the last part of the statement follow from

Theorem 8.4. To prove the implication from right to left, assume that for each A ∈ Kfg
rsi there

exists A∗ ∈ K with A ⩽ A∗ such that for all a1, . . . , an ∈ A∗ there exists a unique a ∈ A∗

such that A∗ ⊨ φ(a1, . . . , an, b).

We begin by showing that φ defines an implicit operation of K. Let

M = {A∗ : A ∈ Kfg
rsi}.

Observe that φ is functional in M by assumption. As φ is a pp formula, we can apply

Corollary 3.11, obtaining that φ is functional in Q(M) as well. Since M ⊆ K and Kfg
rsi ⊆ S(M),

we have K = Q(M) by Proposition 2.16. Hence, we conclude that φ defines an implicit

operation f of K which, moreover is extendable by Theorem 8.13(ii). ⊠

So far, the only concrete example of an extendable implicit operation that we have

encountered is that of “taking inverses” in the quasivariety of cancellative commutative

monoids (see Example 8.8). We close this section with five additional examples related to

filtral quasivarieties, reduced commutative rings, distributive lattices, Hilbert algebras, and

pseudocomplemented distributive lattices.
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Example 8.15 (Filtral quasivarieties). A quasivariety K is said to be relatively filtral when

for every subdirect product A ⩽
∏

i∈I Ai with {Ai : i ∈ I} ⊆ Krsi and every θ ∈ ConK(A)

there exists a filter F on I such that

θ = {⟨a, b⟩ ∈ A× A : Ja ≈ bK ∈ F}.

When K is a variety, we simply say that it is filtral. This notion originated in the context of

varieties [87] and was extended to quasivarieties in [24]. Examples of filtral varieties include

the variety of (bounded) distributive lattices (see, e.g., [10, Ex. 3]).

We recall that the quaternary discriminator function on a set A is the function dA : A4 → A

defined for all a, b, c, d ∈ A as

dA(a, b, c, d) =

{
c if a = b;

d otherwise.

We will prove the following.

Theorem 8.16. Let K be a relatively filtral quasivariety. Then there exists a quaternary

f ∈ exteq(K) such that fA is total and coincides with the quaternary discriminator function

on A for each A ∈ Krsi.

Proof. Consider a relatively filtral quasivariety K. From [24, Thm. 6.3] and the impli-

cation (4)⇒(1) in [25, Thm. 4.1] it follows that there exists a conjunction of equations

φ(x1, x2, x3, x4, y) such that for all A ∈ Krsi and a, b, c, d, e ∈ A,

A ⊨ φ(a, b, c, d, e) ⇐⇒ dA(a, b, c, d) = e.

Therefore, for all A ∈ Krsi and a, b, c, d ∈ A there exists a unique e ∈ A such that A ⊨
φ(a, b, c, d, e). Then Corollary 8.14 implies that φ defines an extendable implicit operation f

of K. In view of the above display, fA coincides with dA for each A ∈ Krsi. ⊠

Example 8.17 (Reduced commutative rings). In Example 3.16 we proved that there exists

an implicit operation of the quasivariety RCRing of reduced commutative rings that coincides

with the operation of “taking weak inverses” in fields. We now show that this operation is

extendable.

Theorem 8.18. There exists a unary f ∈ exteq(RCRing) such that fA is total and coincides

with the operation of taking weak inverses for each field A.

Proof. Let f be the implicit operation of RCRing given by Theorem 3.18. Then fA is total and

coincides with the operation of taking weak inverses for every field A. Moreover, f is defined

by a conjunction of equations, whence f ∈ impeq(RCRing). Therefore, it suffices to prove that

f is extendable. To this end, recall from Theorem 3.17 that RCRing = Q(Field), where Field

is the class of fields. As fA is total for each field A, we can apply Proposition 8.11(ii) (taking

M = Fields), obtaining that f is extendable. ⊠

Example 8.19 (Distributive lattices). Recall from Example 3.19 that “taking relative com-

plements” defines an implicit operation of the variety DL of distributive lattices and that

“taking complements” defines an implicit operation of the variety bDL of bounded distributive

lattices. We show that these operations are extendable.
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Theorem 8.20. The following conditions hold:

(i) the operation of taking relative complements in DL is a ternary member of exteq(DL);

(ii) the operation of taking complements in bDL is a unary member of exteq(bDL).

Proof. We detail only the proof of (i), as the proof of (ii) is analogous. In view of Theorem 3.20,

it suffices to show that the implicit operation f of “taking relative complements” of DL is

extendable. Let D2 be the two-element lattice and observe that fD2 it total. As D2 is (up

to isomorphism) the only subdirectly irreducible member of DL (see, e.g., [11, Ex. 3.19]),

we obtain that fA it total for each A ∈ DLsi. Therefore, we can apply Theorem 8.13(ii),

obtaining that f is extendable. ⊠

Example 8.21 (Hilbert algebras). The implication subreducts of Heyting algebras are known

as Hilbert algebras (see, e.g., [44]). Hilbert algebras form a variety (see [44, Thm. 3]) that

we denote by Hilbert. Every Hilbert algebra ⟨A;→⟩ possesses a term-definable constant

1 = x→ x and can be endowed with a partial order ⩽ defined for all a, b ∈ A as

a ⩽ b ⇐⇒ a→ b = 1.

We denote the implication reduct of a Heyting algebra A by A→. Notably, the order of

A→ coincides with the lattice order of A. We will prove the following.

Theorem 8.22. There exists a binary f ∈ exteq(Hilbert) such that fA→ is total and coincides

with ∧A for each Heyting algebra A.

Proof. Consider the conjunction of equations

φ = (y → x1 ≈ 1) ⊓ (y → x2 ≈ 1) ⊓ (x1 → (x2 → y) ≈ 1).

We begin with the following observation.

Claim 8.23. For all Heyting algebras A and a, b, c ∈ A,

A→ ⊨ φ(a, b, c) ⇐⇒ a ∧ b = c.

Proof of the Claim. Observe that

A ⊨ (c→ a ≈ 1) ⊓ (c→ b ≈ 1) ⇐⇒ (c ⩽ a and c ⩽ b) ⇐⇒ c ⩽ a ∧ b.

As the equation x→ (y → z) ≈ x ∧ y → z holds in every Heyting algebra, we also have

A ⊨ a→ (b→ c) ≈ 1 ⇐⇒ a ∧ b→ c ≈ 1 ⇐⇒ a ∧ b ⩽ c.

From the definition of φ and the two displays above it follows that

A ⊨ φ(a, b, c) ⇐⇒ a ∧ b = c.

Since φ is a formula in the language ⟨→⟩, the demand that A ⊨ φ(a, b, c) is equivalent to

A→ ⊨ φ(a, b, c). Together with the above display, this yields the desired conclusion. ⊠

Let M be the class of implication reducts of Heyting algebras. Since the variety Hilbert is

the class of implication subreducts of Heyting algebras, we have Hilbert = Q(M). Moreover,

observe that φ is functional in M by Claim 8.23. As φ is a conjunction of equations, we can

apply Corollary 3.11, obtaining that φ defines an implicit operation f of Hilbert. In view of
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Claim 8.23, it only remains to show that f is extendable. To this end, consider a Hilbert

algebra A and a, b ∈ A. Then A is a subreduct of a Heyting algebra B, that is, A ⩽ B→.

Since fB→ is total by Claim 8.23, we conclude that f is extendable. ⊠

Example 8.24 (Pseudocomplemented distributive lattices). A pseudocomplemented distribu-

tive lattice is an algebra ⟨A;∧,∨,¬, 0, 1⟩ which comprises a bounded distributive lattice

⟨A;∧,∨, 0, 1⟩ and a unary operation ¬ such that for all a, b ∈ A we have

a ⩽ ¬b ⇐⇒ a ∧ b = 0

(see, e.g., [7, Sec. VIII]).

This means that ¬b is the largest a ∈ A such that a ∧ b = 0. Consequently, pseudocomple-

mented distributive lattices are uniquely determined by their lattice reduct.

Given a Heyting algebra A and a ∈ A, we define ¬a = a → 0. The interest of pseu-

docomplemented distributive lattices derives from the fact that they coincide with the

⟨∧,∨,¬, 0, 1⟩-subreducts of Heyting algebras (see, e.g., [19, Proof of Thm. 2.6]).

It is well known that the class of pseudocomplemented distributive lattices forms a locally

finite variety, which we denote by PDL (see, e.g., [7, Thm. VIII.3.1] and [11, Thm. 4.55]).

The finitely generated members of PDLsi are precisely the pseudocomplemented distributive

lattices whose lattice reduct is a finite Boolean lattice adjoined with a new top element

(see [83, Thm. 2]). Being a finite distributive lattice, every finitely generated member A =

⟨A;∧,∨,¬, 0, 1⟩ of PDLsi can be expanded with an implication →A such that ⟨A;∧,∨,→A

, 0, 1⟩ is a Heyting algebra. We will show that this expansion is witnessed by an extendable

operation of PDL. More precisely, we will establish the following.

Theorem 8.25. There exists a binary f ∈ exteq(PDL) such that fA is total and coincides

with →A for each finitely generated A ∈ PDLsi.

Proof. Let φ(x1, x2, y) be the conjunction of the following equations:

x1 ∧ y ⩽ x2; (26)

¬x1 ∨ x2 ⩽ y; (27)

¬(¬x1 ∨ x2) = ¬y; (28)

y ∨ x1 = ¬¬y ∨ x1. (29)

It will be enough to show that for all finitely generated A ∈ PDLsi and a, b, c ∈ A,

A ⊨ φ(a, b, c) ⇐⇒ a→A b = c. (30)

For suppose this is true. Then φ defines an extendable implicit operation f of PDL by

Corollary 8.14. In addition, the above display guarantees that fA is total and coincides with

→A for each finitely generated A ∈ PDLsi, as desired.

We proceed to prove (30). Let A ∈ PDLsi be finitely generated. Then the lattice reduct of

A is a finite Boolean lattice B adjoined with a new top element. We denote the maximum

of B by ⊤, while the minimum and the maximum of A are 0 and 1, respectively. We also
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write a′ for the complement of a ∈ B in the Boolean lattice B. For all a, b ∈ A we have

a→A b =


a′ ∨ b if a ∈ B and a ⩽̸ b;

1 if a ⩽ b;

b if a = 1.

(31)

It follows that

¬a =


a′ if a ∈ B − {0};

1 if a = 0;

0 if a = 1.

¬¬a =

{
a if a ∈ B − {⊤};

1 if a ∈ {⊤, 1}.
(32)

Therefore,

¬a ∨ b =


a′ ∨ b if a ∈ B − {0};

1 if a = 0;

b if a = 1.

(33)

To prove the equivalence in (30), consider a, b, c ∈ A. We begin with the implication from

right to left. It suffices to verify that A ⊨ φ(a, b, a →A b), which amounts to check that

(26)–(29) hold in A once evaluated in a, b, a→A b. It is a straightforward consequence of the

properties of implications in Heyting algebras that a ∧ (a→A b) ⩽ b and ¬a ∨ b ⩽ a→A b

(see, e.g., [7, Thm. IX.2.3(i, iv, v)]). So, (26) and (27) hold in A. From [7, Thm. IX.2.3(ix,

xi)] it follows that ¬(¬a∨ b) = ¬¬a∧¬b = ¬(a→A b), and hence (28) holds. It only remains

to verify (29), which states that (a →A b) ∨ a = ¬¬(a →A b) ∨ a. First observe that the

equation clearly holds when a ∈ {0, 1}. So, we can assume that a /∈ {0, 1}. By (28), (33),

and (32) we have

¬¬(a→A b) = ¬¬(¬a ∨ b) = ¬¬(a′ ∨ b) =

{
a′ ∨ b if a ⩽̸ b;

1 if a ⩽ b,

which coincides with a→A b by (31) because a ̸= 1. Thus, (a→A b) ∨ a = ¬¬(a→A b) ∨ a,

and hence (29) holds.

We proceed to prove the implication from left to right in (30). To this end, assume that

A ⊨ φ(a, b, c). We will show that a →A b = c. From (26) it follows that a ∧ c ⩽ b, which

yields c ⩽ a →A b. It then remains to show that a →A b ⩽ c. We consider different cases

separately. If a = 1, then (27) implies that a →A b = b = ¬a ∨ b ⩽ c. So, we can assume

that a ̸= 1. Consider the case in which a ⩽ b. Then

c ∨ a = ¬¬c ∨ a = ¬¬(¬a ∨ b) ∨ a = 1 ∨ a = 1,

where the first and second equalities follow from (29) and (28), and the third from (32)

because ¬a ∨ b ∈ {⊤, 1} as a ⩽ b. We have thus obtained that c ∨ a = 1. Since A has a

second largest element ⊤, we have that 1 is join irreducible in A. So, c ∨ a = 1 and a ≠ 1

imply c = 1, and hence c = a→A b, because a ⩽ b. Finally, we can assume that a ̸= 1 and

a ⩽̸ b. Then a, b ̸= 1, and so a, b ∈ B. Thus, ¬a∨ b /∈ {⊤, 1} because a ⩽̸ b. Then (32) yields

¬¬(¬a ∨ b) = ¬a ∨ b. So, (28) implies that ¬¬c = ¬a ∨ b. Therefore, c ⩽ ¬a ∨ b ∈ B − {⊤},
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and hence c ∈ B−{⊤}. Then c = ¬¬c = ¬a∨ b. Since a ⩽̸ b and a ̸= 1, we have a ∈ B−{0}
and, therefore, ¬a∨b = a′∨b = a→A b by (33) and (31). Consequently, c = ¬a∨b = a→A b.

This establishes that c = a→A b in all possible cases and concludes the proof. ⊠

9. Adding implicit operations

A fundamental question which arises in relation to implicit operations is the following: is it

possible to expand the language of a given class of algebras K with new function symbols for

some of its implicit operations so that every implicit operation of K becomes interpolable by

a set of terms in a class M of algebras in the expanded language? Obviously, the interest

of this possibility depends on whether M meets some basic desiderata: in addition to the

demand that every implicit operation of K can be interpolated by a set of terms of M, we

shall demand from our theory that

(D1) every member of K extends to one of M;

(D2) when such a class M exists, it is unique.

A familiar example of this situation is given by

K = the quasivariety of cancellative commutative monoids;

M = the variety of Abelian groups.

In this case, M is obtained by adding the implicit operation of “taking inverses” to K. The

fact that every implicit operation of K is interpolated by a set of terms of M is a consequence

of M having the strong Beth definability property (see Example 6.3). Furthermore, (D1) holds

because every cancellative commutative monoid extends to an Abelian group by Theorem 8.9.

Lastly, (D2) will be a consequence of the general theory (Theorem 11.7). On the other hand,

we will show that the variety of all commutative monoids lacks an expansion with the desired

properties (Theorem 14.1).

In this section, we begin to set the stage for this theory by describing how to expand a

class of algebras with a given family of implicit operations.

Definition 9.1. Let K be a class of algebras and F ⊆ imp(K). An F -expansion of LK is a

language LK ∪ {gf : f ∈ F}, where gf is a new function symbol of the same arity as that of

f for each f ∈ F . We will often denote an F-expansion of LK by LF . When F = {f} for

some f ∈ imp(K), we drop the braces and just write Lf and call it an f -expansion.

Definition 9.2. Let K be a class of algebras, F ⊆ imp(K), and LF an F -expansion of LK.

(i) For each A ∈ K such that fA is total for every f ∈ F , let

A[LF ] = the unique LF -algebra whose LK-reduct is A and in which

gf is interpreted as fA for each f ∈ F .

(ii) For each M ⊆ K let

M[LF ] = {A[LF ] : A ∈ M and fA is total for each f ∈ F}.

The class K[LF ] can be viewed as the natural expansion of K induced by the implicit

operations in F . The next result provides an alternative description of the class K[LF ].
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Proposition 9.3. Let K be a class of algebras, F ⊆ imp(K), and LF = LK ∪ {gf : f ∈ F}
an F-expansion of LK. Assume that each f ∈ F is defined by a formula φf . Then

K[LF ] = {B : B is an LF -algebra such that B↾LK
∈ K and

B ⊨ φf (x1, . . . , xn, gf (x1, . . . , xn)) for each n-ary f ∈ F}.

Proof. To prove the inclusion from left to right, consider B ∈ K[LF ]. The definition of K[LF ]

guarantees that there exists A ∈ K such that fA is total for all f ∈ F and B = A[LF ]. In

particular, B is an LF -algebra. As A is the LK-reduct of A[LF ] by the definition of A[LF ],

this yields B↾LK
= A ∈ K. Then consider an n-ary f ∈ F . Since f is defined by φf and fA

is total, for all a1, . . . , an ∈ A we have

⟨a1, . . . , an⟩ ∈ dom(fA) and A ⊨ φf (a1, . . . , an, f
A(a1, . . . , an)).

By the definition of A[LF ] the operation gf is interpreted in A[LF ] as fA. As A is the LK-

reduct of A[LF ], from the above display it follows that A[LF ] ⊨ φf (x1, . . . , xn, gf (x1, . . . , xn)).

Since B = A[LF ], we conclude that B ⊨ φf (x1, . . . , xn, gf (x1, . . . , xn)), as desired.

Then we proceed to prove the inclusion from right to left. Consider an LF -algebra B

such that B↾LK
∈ K and B ⊨ φf(x1, . . . , xn, gf(x1, . . . , xn)) for each n-ary f ∈ F . For the

sake of readability, let A = B↾LK
and observe that A ∈ K by assumption. We will prove

that the algebra A[LF ] is defined and coincides with B, whence B ∈ K[LF ], as desired.

Since A = B↾LK
and A ∈ K, it suffices to show that for each f ∈ F the function fA is total

and coincides with the interpretation of gf in B. To this end, consider an n-ary f ∈ F and

a1, . . . , an ∈ A. We need to prove that

⟨a1, . . . , an⟩ ∈ dom(fA) and gBf (a1, . . . , an) = fA(a1, . . . , an).

First, from the assumption that B ⊨ φf(x1, . . . , xn, gf(x1, . . . , xn)) it follows that B ⊨
φf(a1, . . . , an, g

B
f (a1, . . . , an)). As φf is a formula of LK and A = B↾LK

, this amounts to

A ⊨ φf (a1, . . . , an, g
B
f (a1, . . . , an)). Since φf defines f , the above display holds. ⊠

As a consequence of Proposition 9.3, we obtain the following.

Corollary 9.4. Let K be a class of algebras, F ⊆ imp(K), and LF an F-expansion of LK.

If K is an elementary class, then K[LF ] is an elementary class.

A useful feature of F-expansions is that a map between members of K[LF ] preserves

the operations in F if it preserves the operations in LK. This is made precise in the next

proposition.

Proposition 9.5. Let K be a class of algebras, F ⊆ imp(K), and LF an F-expansion of

LK. Every homomorphism h : A↾LK
→ B↾LK

with A,B ∈ K[LF ] is also a homomorphism

h : A → B.

Proof. As LF is an F-expansion of LK, it is of the form LK ∪ {gf : f ∈ F}. Then let

h : A↾LK
→ B↾LK

be a homomorphism with A,B ∈ K[LF ]. It suffices to prove that h

preserves gf for each f ∈ F . To this end, consider f ∈ F . Since A,B ∈ K[LF ], we have

A = A↾LK
[LF ] and B = B↾LK

[LF ]. Therefore,

gAf = fA↾LK and gBf = fB↾LK .
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As h : A↾LK
→ B↾LK

is a homomorphism between members of K and f an implicit operation

of K, we know that h preserves f . In view of the above display, we conclude that h preserves

gf . ⊠

In general, there is no guarantee that each member of K is a subreduct of a member of

K[LF ] or, equivalently, that condition (D1) is met. In the setting of universal classes, this is

the case exactly when the members of F are extendable.

Proposition 9.6. Let K be a universal class, F ⊆ imp(K), and LF an F-expansion of LK.

Then K is the class of LK-subreducts of K[LF ] if and only if F ⊆ ext(K).

Proof. We begin with the implication from left to right. Suppose that K is the class of

LK-subreducts of K[LF ] and consider an n-ary f ∈ F . We need to prove that f is extendable.

To this end, consider A ∈ K. By assumption A is a subreduct of some C ∈ K[LF ]. By

the definition of K[LF ] there exists B ∈ K in which gB is total for each g ∈ F such that

C = B[LF ]. As A is an LK-subreduct of C = B[LF ] and B is the LK-reduct of B[LF ],

we obtain A ⩽ B. Furthermore, fB is total because f ∈ F . Since A ⩽ B ∈ K, we conclude

that f is extendable.

Then we proceed to prove the implication from right to left. Suppose that F ⊆ ext(K)

and consider A ∈ K. As K is a universal class, we can apply Theorem 8.4, obtaining some

B ∈ K with A ⩽ B such that fB is total for each f ∈ F . By the definition of K[LF ] we

get B[LF ] ∈ K[LF ]. Since B is the LK-reduct of B[LF ] and A ⩽ B, the algebra A is an

LK-subreduct of a member of K[LF ]. ⊠

We close this section with some observations governing the behavior of K[LF ] with respect

to class operators.

Proposition 9.7. Let K be a class of algebras and F ⊆ imppp(K). Moreover, let

M = {A ∈ K : fA is total for each f ∈ F}.

Then for each O ∈ {H,P,Pu} we have

O(M) ∩ K ⊆ M.

Proof. In order to prove that O(M) ∩ K ⊆ M, consider an n-ary f ∈ F , A ∈ O(M) ∩ K, and

a1, . . . , an ∈ A. Since F ⊆ imppp(K) by assumption, there exists a pp formula φ(x1, . . . , xn, y)

defining f . We need to show that ⟨a1, . . . , an⟩ ∈ dom(fA), which is equivalent to A ⊨
∃yφ(a1, . . . , an, y). The definition of M guarantees that

M ⊨ ∃yφ(x1, . . . , xn, y). (34)

We have three cases depending on whether O is H, P, or Pu. First consider the case where

O = H. Then A ∈ H(M) implies that there exist B ∈ M and a surjective homomorphism

h : B → A. Let b1, . . . , bn ∈ B be such that h(bi) = ai for each i ⩽ n. From (34) and B ∈ M

it follows that B ⊨ ∃yφ(b1, . . . , bn, y). Since φ is a pp formula by assumption, so is ∃yφ.

Therefore, we can apply Theorem 1.1(ii) to obtain that A ⊨ ∃yφ(h(b1), . . . , h(bn), y). As

h(bi) = ai for each i ⩽ n, it follows that A ⊨ ∃yφ(a1, . . . , an, y), as desired.
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Then we consider the case where O = P. From A ∈ P(M) it follows that A =
∏

i∈I Ai for

some family {Ai : i ∈ I} ⊆ M. In view of (34), we have

Ai ⊨ ∃yφ(pi(a1), . . . , pi(an), y) for every i ∈ I.

Since φ is a pp formula by assumption, so is ∃yφ. Therefore, we can apply Theorem 1.1(ii)

to the above display, obtaining A ⊨ ∃yφ(a1, . . . , an, y), as desired.

Lastly, we consider the case where O = Pu. From A ∈ Pu(M) it follows that A =
∏

i∈I Ai/U

for some family {Ai : i ∈ I} ⊆ M and ultrafilter U on I. Since {Ai : i ∈ I} ⊆ M, we can apply

 Loś’ Theorem 1.6 to (34), obtaining A ⊨ ∃yφ(x1, . . . , xn, y). Thus, A ⊨ ∃yφ(a1, . . . , an, y).

This concludes the proof. ⊠

Proposition 9.8. Let K be a class of algebras, F ⊆ imppp(K), and LF an F-expansion of

LK. Moreover, let

M = {A ∈ K : fA is total for each f ∈ F}.

The following conditions hold for all N ⊆ M and class operators O such that O(K) ⊆ K:

(i) if O ∈ {I,H,P,Pu}, then

O(N[LF ]) = (O(N))[LF ];

(ii) if O = S and F ⊆ impeq(K), then

S(N[LF ]) ⊆ (S(N))[LF ].

Proof. As LF is an F-expansion of LK, it is of the form LK ∪ {gf : f ∈ F}. This fact will

be used repeatedly without further notice.

(i): Assume that N ⊆ M and let O ∈ {I,H,P,Pu} be such that O(K) ⊆ K. We first establish

the following.

Claim 9.9. For every A ∈ N ∪O(N) the algebra A[LF ] is defined.

Proof of the Claim. The definition of M guarantees that A[LF ] is defined for each A ∈ M.

It then suffices to show that N ∪O(N) ⊆ M. As N ⊆ M holds by assumption, it remains to

prove that O(N) ⊆ M. From N ⊆ M ⊆ K and O(K) ⊆ K it follows that O(N) ⊆ O(M) and

O(N) ⊆ O(K) ⊆ K. Therefore, O(N) ⊆ O(M)∩K. Since Proposition 9.7 yields O(M)∩K ⊆ M,

we conclude that O(N) ⊆ M. ⊠

We have to consider four cases depending on whether O is I, H, P, or Pu. We will start

with the cases where O = I and O = H, which can be treated simultaneously. Suppose that

O ∈ {I,H}. To prove that O(N[LF ]) ⊆ (O(N))[LF ] consider A ∈ O(N[LF ]). Then there

exist B ∈ N[LF ] and a surjective homomorphism h : B → A, which we can assume to be an

isomorphism when O = I. As B↾LK
∈ N and h is also a homomorphism h : B↾LK

→ A↾LK
,

which is an isomorphism when O = I, we obtain A↾LK
∈ O(N). Hence, A↾LK

[LF ] is defined

by Claim 9.9 and, therefore, A↾LK
[LF ] ∈ (O(N))[LF ]. To show that A ∈ (O(N))[LF ], it

is then sufficient to prove that A = A↾LK
[LF ]. Let f ∈ F be n-ary, a1, . . . , an ∈ A, and
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b1, . . . , bn ∈ B be such that h(bi) = ai for each i ⩽ n. We have

gAf (a1, . . . , an) = gAf (h(a1), . . . , h(an)) = h(gBf (b1, . . . , bn))

= h(fB↾LK (b1, . . . , bn)) = fA↾LK (h(b1), . . . , h(bn))

= fA↾LK (a1, . . . , an),

where the first and last equalities hold because ai = h(bi) for each i ⩽ n, the second and

fourth hold because h : B → A and h : B↾LK
→ A↾LK

are homomorphisms and f ∈ imp(K),

and the third holds because gBf = fB↾LK by the definition of gBf . Together with the fact

that A and A↾LK
[LF ] have the same LK-reduct, the above display yields A = A↾LK

[LF ], as

desired.

For the reverse inclusion, consider A[LF ] ∈ O(N)[LF ]. Then there exist B ∈ N and

a surjective homomorphism h : B → A, which is an isomorphism when O = I. Since

B ∈ N, Claim 9.9 yields that B[LF ] is defined and belongs to N[LF ]. By Proposition 9.5,

h : B[LF ] → A[LF ] is a homomorphism. Thus, we conclude that A[LF ] ∈ O(N[LF ]).

Then we consider the case where O = P. From the definitions of P(N[LF ]) and (P(N))[LF ]

it follows that

A ∈ P(N[LF ]) ⇐⇒ A =
∏
i∈I

(Ai[LF ]) for some {Ai : i ∈ I} ⊆ N;

A ∈ (P(N))[LF ] ⇐⇒ A =
(∏

i∈I

Ai

)
[LF ] for some {Ai : i ∈ I} ⊆ N.

Therefore, to conclude that P(N[LF ]) = (P(N))[LF ], it suffices to show that for every family

{Ai : i ∈ I} ⊆ N, ∏
i∈I

(Ai[LF ]) =
(∏

i∈I

Ai

)
[LF ],

where the algebras in the above display are defined by Claim 9.9. Observe that
∏

i∈I(Ai[LF ])

and (
∏

i∈I Ai)[LF ] have the same LK-reduct, namely,
∏

i∈I Ai. It will then be enough to

prove that for all n-ary f ∈ F and a1, . . . , an, b ∈
∏

i∈I Ai,

g
∏

i∈I(Ai[LF ])

f (a1, . . . , an) = b ⇐⇒ g
(
∏

i∈I Ai)[LF ]

f (a1, . . . , an) = b. (35)

To this end, recall from the assumptions that f is defined by a pp formula φ. Observe that∏
i∈I Ai ∈ P(K) ⊆ K, and hence f

∏
i∈I Ai is defined. We will prove that

g
∏

i∈I(Ai[LF ])

f (a1, . . . , an) = b ⇐⇒ g
Ai[LF ]
f (pi(a1), . . . , pi(an)) = pi(b) for every i ∈ I

⇐⇒ fAi(pi(a1), . . . , pi(an)) = pi(b) for every i ∈ I

⇐⇒ Ai ⊨ φ(pi(a1), . . . , pi(an), pi(b)) for every i ∈ I

⇐⇒
∏
i∈I

Ai ⊨ φ(a1, . . . , an, b)

⇐⇒ f
∏

i∈I Ai(a1, . . . , an) = b

⇐⇒ g
(
∏

i∈I Ai)[LF ]

f (a1, . . . , an) = b.
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The above equivalences are justified as follows. The first holds by the definition of a direct

product, the second by the definition of Ai[LF ], the third and the fifth because f is defined by

φ, the fourth follows from an application of Theorem 1.1(ii) made possible by the assumption

that φ is a pp formula, and the last one holds by the definition of (
∏

i∈I Ai)[LF ]. This

establishes (35), thus concluding the proof that P(N[LF ]) = (P(N))[LF ].

Lastly, we consider the case where O = Pu. From the definitions of Pu(N[LF ]) and

(Pu(N))[LF ] it follows that

A ∈ Pu(N[LF ]) ⇐⇒ there exist {Ai : i ∈ I} ⊆ N and an ultrafilter U on I

such that A =
∏
i∈I

(Ai[LF ])/U ;

A ∈ (Pu(N))[LF ] ⇐⇒ there exist {Ai : i ∈ I} ⊆ N and an ultrafilter U on I

such that A =
(∏

i∈I

Ai/U
)

[LF ].

Therefore, to conclude that Pu(N[LF ]) = (Pu(N))[LF ], it suffices to show that for every family

{Ai : i ∈ I} ⊆ N and ultrafilter U on I,∏
i∈I

(Ai[LF ])/U =
(∏

i∈I

Ai/U
)

[LF ],

where the algebras in the above display are defined by Claim 9.9.

Similarly to the case O = P it suffices to show that for all n-ary f ∈ F and a1, . . . , an, b ∈∏
i∈I Ai/U

g
∏

i∈I(Ai[LF ])/U

f (a1/U, . . . , an/U) = b/U ⇐⇒ g
(
∏

i∈I Ai/U)[LF ]

f (a1/U, . . . , an/U) = b/U. (36)

To this end, recall from the assumptions that f is defined by a pp formula φ. Observe that∏
i∈I Ai/U ∈ Pu(K) ⊆ K, and hence f

∏
i∈I Ai/U is defined. We will prove that

g
∏

i∈I(Ai[LF ])/U

f (a1/U, . . . , an/U) = b/U ⇐⇒ g
∏

i∈I(Ai[LF ])

f (a1, . . . , an)/U = b/U

⇐⇒ Jg
∏

i∈I(Ai[LF ])

f (a1, . . . , an) ≈ bK ∈ U

⇐⇒ {i ∈ I : g
Ai[LF ]
f (pi(a1), . . . , pi(an)) = pi(b)} ∈ U

⇐⇒ {i ∈ I : fAi(pi(a1), . . . , pi(an)) = pi(b)} ∈ U

⇐⇒ {i ∈ I : Ai ⊨ φ(pi(a1), . . . , pi(an), pi(b))} ∈ U

⇐⇒ Jφ(a1, . . . , an, b)K ∈ U

⇐⇒
∏
i∈I

Ai/U ⊨ φ(a1/U, . . . , an/U, b/U)

⇐⇒ f
∏

i∈I Ai/U(a1/U, . . . , an/U) = b/U

⇐⇒ g
(
∏

i∈I Ai/U)[LF ]

f (a1/U, . . . , an/U) = b/U.

The above equivalences are justified as follows. The first holds by the definition of a quo-

tient algebra, the second by the definition of an ultraproduct, the third and the sixth

are straightforward, the fourth holds by the definition of Ai[LF ], the fifth and the eighth
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because φ defines f , the seventh follows from  Loś’ Theorem 1.6, and the last one from

the definition of (
∏

i∈I Ai/U)[LF ]. This establishes (36), thus concluding the proof that

Pu(N[LF ]) = (Pu(N))[LF ].

(ii): Suppose that O = S and that each f ∈ F is defined by a conjunction of equations

φf . We need to prove that S(N[LF ]) ⊆ (S(N))[LF ]. Consider A ∈ S(N[LF ]). Then there

exists B ∈ N such that A ⩽ B[LF ]. As B is the LK-reduct of B[LF ] and A ⩽ B[LF ], we

obtain A↾LK
⩽ B ∈ N. Therefore, A↾LK

∈ S(N). We will prove that the algebra A↾LK
[LF ]

is defined and coincides with A, whence A ∈ (S(N))[LF ], as desired.

Since K is closed under S by assumption and N ⊆ K, we obtain A↾LK
∈ S(N) ⊆ K. It

then suffices to show that for each f ∈ F the function fA↾LK is total and coincides with the

interpretation of gf in A. To this end, consider an n-ary f ∈ F and a1, . . . , an ∈ A. We need

to prove that

⟨a1, . . . , an⟩ ∈ dom(fA↾LK ) and gAf (a1, . . . , an) = fA↾LK (a1, . . . , an). (37)

Observe that

fB(a1, . . . , an) = g
B[LK]
f (a1, . . . , an) = gAf (a1, . . . , an),

where the first equality holds by a1, . . . , an ∈ A ⊆ B and the definition of B[LK], and the

second holds because A ⩽ B[LK]. Since f is defined by a conjunction of equations φf by

assumption, the above display yields

B ⊨ φf (a1, . . . , an, g
A
f (a1, . . . , an)).

From A ⩽ B[LF ] it follows that A↾LK
⩽ B because B is the LK-reduct of B[LF ]. As φf

is a conjunction of equations and A↾LK
⩽ B, we can apply Theorem 1.1(iii) to the above

display obtaining

A↾LK
⊨ φf (a1, . . . , an, g

A
f (a1, . . . , an)).

Since φf defines f and A↾LK
∈ K, we conclude that (37) holds. ⊠

Proposition 9.10. Let K be a class of algebras, F ⊆ imppp(K), and LF an F-expansion of

LK. Moreover, let

M = {A ∈ K : fA is total for each f ∈ F}.
Then for all N ⊆ M and class operator O ∈ {U,Q, ISP},

if K is closed under O, then O(N[LF ]) = S((O(N))[LF ]).

Proof. We will detail the case in which O = U, as the proof of the case in which O ∈ {Q, ISP}
is analogous. Assume that K is closed under U. Then it is closed under I and Pu as well.

Moreover, by assumption

N ⊆ M (38)

Therefore, from Proposition 9.8 it follows that

IPu(N[LF ]) = (IPu(N))[LF ]. (39)

We will show that

U(N[LF ]) = ISPu(N[LF ]) = SIPu(N[LF ]) = S((IPu(N))[LF ]) ⊆ S((U(N))[LF ]).
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The first equality above holds by Theorem 2.2, the second because IS = SI, the third follows

from (39), and the last inclusion holds because IPu(N) ⊆ U(N). This establishes the inclusion

U(N[LF ]) ⊆ S((U(N))[LF ]).

Therefore, it only remains to prove the reverse inclusion S((U(N))[LF ]) ⊆ U(N[LF ]).

Consider A ∈ S((U(N))[LF ]). Then there exists B ∈ U(N) such that B[LF ] is defined and

A ⩽ B[LF ]. From B ∈ U(N) and Theorem 2.2 it follows that B ∈ ISPu(N). Therefore, there

exist a family {Bi : i ∈ I} ⊆ N, an ultrafilter U on I, and an embedding h : B →
∏

i∈I Bi/U .

In view of (38), we have

{Bi : i ∈ I} ⊆ M (40)

Since the hypotheses of Proposition 9.8 are satisfied, we can apply Claim 9.9 to the assumptions

that K is closed under Pu and the above display, obtaining that the algebra (
∏

i∈I Bi/U)[LF ]

is defined. Observe that B,
∏

i∈I Bi/U ∈ ISPu(N) ⊆ K because N ⊆ K and K is closed under

U by assumption. Consequently,

B[LF ],
(∏

i∈I

Bi/U
)

[LF ] ∈ K[LF ].

Since h : B →
∏

i∈I Bi/U is an embedding between members of K, from the above dis-

play and Proposition 9.5 it follows that h can be regarded as an embedding h : B[LF ] →
(
∏

i∈I Bi/U)[LF ]. Lastly, (40) and the assumption that K is closed under Pu allow us to

apply Proposition 9.8(i), obtaining∏
i∈I

(Bi[LF ])/U ∈ (Pu({Bi : i ∈ I}))[LF ].

As the LK-reduct of
∏

i∈I(Bi[LF ])/U is
∏

i∈I Bi/U , the above display yields∏
i∈I

(Bi[LF ])/U =
(∏

i∈I

Bi/U
)

[LF ].

Therefore, the map h : B[LF ] →
∏

i∈I(Bi[LF ])/U is an embedding. Since {Bi : i ∈ I} ⊆ N,

it follows that B[LF ] ∈ ISPu(N[LF ]). As A ⩽ B[LF ] by assumption, we conclude that

A ∈ SISPu(N[LF ]) ⊆ U(N[LF ]). ⊠

10. Primitive positive expansions

As we mentioned, our aim is to expand the language of a given elementary class of algebras

K by adding to it enough implicit operations so that every implicit operation of K becomes

interpolable by a set of terms in a class M of algebras in the expanded language. In view of

Corollary 3.10, the latter can be stated as the demand that implicit operations of K defined

by pp formulas be interpolated by terms of M. Because of this, from now on we shall restrict

our attention to implicit operations defined by pp formulas. Furthermore, we require the

implicit operations under consideration to be extendable in order to guarantee the validity of

condition (D1) (see Proposition 9.6).

However, even when the implicit operations in F are defined by pp formulas and extendable,

the class K[LF ] may lack some desirable closure properties. More precisely, there is no

guarantee that if K is a universal class or a quasivariety, then so is K[LF ]. This problem is
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easily overcome by closing K[LF ] under S, leading to the core of this section, namely, the

notion of a pp expansion.

Definition 10.1. Let K and M be a pair of classes of algebras. Then M is said to be a

primitive positive expansion (pp expansion for short) of K when M = S(K[LF ]) for some

F ⊆ extpp(K) and F -expansion LF of LK. In this case, we say that M is induced by F and

LF .

From Proposition 9.6 we deduce that pp expansions satisfy condition (D1).

Proposition 10.2. Let M be a pp expansion of a universal class K. Then K is the class of

LK-subreducts of M.

Proof. Assume that M is a pp expansion of K of the form S(K[LF ]). As K is a universal

class, we can apply Proposition 9.6, obtaining that K is the class of LK-subreducts of K[LF ].

Hence, K is also the class of LK-subreducts of S(K[LF ]) = M. ⊠

As we announced, the following holds true.

Theorem 10.3. Let K be a class of algebras. The following conditions hold for a pp expansion

M of K induced by F and LF :

(i) if K is a universal class, then M is a universal class;

(ii) if K is a quasivariety, then M is a quasivariety such that Mrsi ⊆ S(Krsi[LF ]);

(iii) if K is a variety and F ⊆ exteq(K), then M is a variety.

As shown in [27, Thm. 2.1], the hypothesis that F ⊆ exteq(K) in Theorem 10.3(iii) cannot be

dispensed with.

Besides the above theorem, the main result of this section consists of four observations

which facilitate the task of detecting the pp expansions of a given class of algebras. On the

one hand, we will establish the following description of pp expansions induced by implicit

operations definable by conjunctions of equations (for a similar result, see [32, Lem. 2.1]).

Theorem 10.4. Let K be a universal class axiomatized by a set of formulas Σ and M a pp

expansion of K induced by F ⊆ exteq(K) and LF = LK ∪{gf : f ∈ F}. Then M = K[LF ] and

M is axiomatized by

Σ ∪ {φf (x1, . . . , xn, gf (x1, . . . , xn)) : f is an n-ary member of F},

where φf denotes the conjunction of equations defining f ∈ F .

On the other hand, we will establish the next description of pp expansions in terms of the

class operators of universal class and quasivariety generation.

Theorem 10.5. Let K be a class of algebras, F ⊆ extpp(K), and LF an F-expansion of LK.

Moreover, let N ⊆ K and assume that fA is total for all A ∈ N and f ∈ F . Then for each

O ∈ {U,Q} such that K = O(N) the class O(N[LF ]) is a pp expansion of K that coincides

with S(K[LF ]).

We will then show that the relation “being a pp expansion of” is transitive.
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Theorem 10.6. Every pp expansion of a pp expansion of a class of algebras K is a pp

expansion of K.

Lastly, we will show that enlarging the set of implicit operations inducing a pp expansion

of a class of algebras also yields a pp expansion of the same class.

Theorem 10.7. Let K be a universal class and F ⊆ G ⊆ extpp(K). Let also LF be an

F-expansion of LK and LG a G-expansion of LK such that LF ⊆ LG. Then S(K[LG]) is a

pp expansion of S(K[LF ]).

Before proving Theorems 10.3, 10.4, 10.5, 10.6, and 10.7, let us illustrate how these results

can be used to describe pp expansions of familiar classes of algebras.

Example 10.8 (Lazy pp expansions). Every class of algebras K closed under S is a pp

expansion of itself. For let F = ∅. Then F = ∅ ⊆ extpp(K). Furthermore, let LF = LK

and observe that LF is an F-expansion of LK because F = ∅. Therefore, the class K[LF ]

coincides with K. As K is closed under S, we conclude that K = S(K[LF ]), whence K is a pp

expansion of itself. ⊠

Example 10.9 (Cancellative commutative monoids). We will prove the following.

Theorem 10.10. The variety of Abelian groups is a pp expansion of the quasivariety of

cancellative commutative monoids.

Proof. Let f be the unary implicit operation of the quasivariety of cancellative commutative

monoids CCMon given by Theorem 8.10. Recall from the same theorem that f is extendable

and defined by the equation x · y ≈ 1. Moreover, let ( )−1 be a unary function symbol and

denote by t−1 the result of applying ( )−1 to a term t. Then the language Lf = LCCMon∪{( )−1}
is an f -expansion of LCCMon, in which the role of gf is played by ( )−1.

As CCMon is a universal class, Theorem 10.4 yields that CCMon[Lf ] is a pp expansion of

CCMon axiomatized by the axioms for cancellative commutative monoids plus the equation

x · x−1 ≈ 1.

Clearly, every member of CCMon[Lf ] is an Abelian group. On the other hand, every

Abelian group can be obtained by adding the implicit operation f to its monoid reduct, which

is a cancellative commutative monoid. Therefore, CCMon[Lf ] coincides with the variety of

Abelian groups. ⊠

Example 10.11 (Distributive lattices). Our aim is to establish the next result.

Theorem 10.12. The following conditions hold:

(i) the variety of relatively complemented distributive lattices is a pp expansion of the variety

of distributive lattices;

(ii) the variety of Boolean algebras is a pp expansion of the variety of bounded distributive

lattices.

Proof. We detail only the proof of (i), as the proof of (ii) is analogous. Let f be the ternary

implicit operation of the variety of distributive lattices DL given by Theorem 8.20. Recall
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from the same theorem that f is extendable and defined by the conjunction of equations

φ = (x1 ∧ y ≈ x1 ∧ x2 ∧ x3) ⊓ (x1 ∨ y ≈ x1 ∨ x2 ∨ x3).

Moreover, let r be a ternary function symbol. Then the language Lf = LDL ∪ {r} is an

f -expansion of LDL, in which the role of gf is played by r.

As DL is a universal class, we can apply Theorem 10.4, obtaining that DL[Lf ] is a pp

expansion of DL axiomatized by the axioms for distributive lattices plus the equations

x1 ∧ r(x1, x2, x3) ≈ x1 ∧ x2 ∧ x3 and x1 ∨ r(x1, x2, x3) ≈ x1 ∨ x2 ∨ x3.

As a consequence, DL[Lf ] coincides with the variety of relatively complemented distributive

lattices (see Example 7.4). ⊠

Example 10.13 (Reduced commutative rings). A meadow is an algebra ⟨A; +, ·,−, ( )∗, 0, 1⟩
which comprises a commutative ring ⟨A; +, ·,−, 0, 1⟩ and a unary operation ( )∗ such that for

each a ∈ A,

(a · a∗) · a = a and a = a∗∗

(see, e.g., [13]). As a consequence, the class of meadows forms a variety.

Prototypical examples of meadows arise by adding the operation of “taking weak inverses”

to fields. More precisely, a zero-totalized field is an algebra ⟨A; +, ·,−, ( )∗, 0, 1⟩ comprising a

field ⟨A; +, ·,−, 0, 1⟩ and a unary operation ( )∗ defined as a∗ = wi(a) for each a ∈ A, where

wi(a) is the weak inverse of a (see Example 3.16). Meadows were introduced in response to

the desire to construct an equational theory that captures the essence of fields. The following

representation theorem (see [12, Sec. 3.2]) shows that they fulfill this expectation.

Theorem 10.14. An algebra is a meadow if and only if it is isomorphic to a subdirect product

of zero-totalized fields.

We will prove the following.

Theorem 10.15. The variety of meadows is a pp expansion of the quasivariety of reduced

commutative rings.

Proof. Let f be the unary implicit operation of the quasivariety RCRing of reduced commu-

tative rings given by Theorem 8.18 and recall from the same theorem that f ∈ extpp(RCRing).

Moreover, let ( )∗ be a unary function symbol. Then the language Lf = LRCRing ∪ {( )∗} is

an f -expansion of LRCRing, in which the role of gf is played by ( )∗.

From Theorem 8.18 it follows that for each field A the function fA is total and the algebra

A[Lf ] coincides with the zero-totalized field obtained by adding the operation of “taking weak

inverses” to A. Therefore, letting Field and Field∗ be the classes of fields and of zero-totalized

fields, respectively, we obtain Field[Lf ] = Field∗. In view of Theorems 3.17 and 10.14, we also

have

RCRing = Q(Field) and Meadow = Q(Field∗),

where Meadow is the variety of meadows. Lastly, recall that f ∈ extpp(RCRing) and that fA

is total for each A ∈ Field. Together with the left hand side of the above display, this allows

us to apply Theorem 10.5, obtaining that Q(Field[Lf ]) is a pp expansion of RCRing. By
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applying in succession the equality Field[Lf ] = Field∗ and the right hand side of the above

display, we obtain

Q(Field[Lf ]) = Q(Field∗) = Meadow.

Hence, we conclude that Meadow is a pp expansion of RCRing. ⊠

Example 10.16 (Hilbert algebras). An implicative semilattice is an algebra ⟨A;∧,→⟩ which

comprises a semilattice ⟨A;∧⟩ and a binary operation → such that for all a, b, c ∈ A,

a ∧ b ⩽ c ⇐⇒ a ⩽ b→ c,

where ⩽ is the meet order of ⟨A;∧⟩. The class of implicative semilattices forms a variety

(see, e.g., [77, pp. 105–106]) which coincides with the class of ⟨∧,→⟩-subreducts of Heyting

algebras (see [66, Thms. 5.1 & 9.1]). We will prove the following.

Theorem 10.17. The variety of implicative semilattices is a pp expansion of the variety of

Hilbert algebras.

Proof. First, let

Heyting→ = the class of ⟨→⟩-reducts of Heyting algebras;

Heyting∧,→ = the class of ⟨∧,→⟩-reducts of Heyting algebras.

As the variety Hilbert of Hilbert algebras is the class of ⟨→⟩-subreducts of Heyting algebras

and the variety ISL of implicative semilattices is the class of ⟨∧,→⟩-subreducts of Heyting

algebras, we have

Hilbert = Q(Heyting→) and ISL = Q(Heyting∧,→). (41)

Now, let f ∈ extpp(Hilbert) be the binary implicit operation given by Theorem 8.22.

Moreover, let ∧ be a binary function symbol. Then the language Lf = LHilbert ∪ {∧} is an

f -expansion of LHilbert, in which the role of gf is played by ∧.

Recall from Theorem 8.22 that for every Heyting algebra A with implication reduct A→
the operation fA→ is total and coincides with the meet operation of A. Therefore, the algebra

A→[Lf ] is defined and coincides with the ⟨∧,→⟩-reduct of A. Consequently,

Heyting→[Lf ] = Heyting∧,→.

Lastly, recall that f ∈ extpp(Hilbert) and that fA is total for each A ∈ Heyting→. Together

with the left hand side of (41), this allows us to apply Theorem 10.5, obtaining that

Q(Heyting→[Lf ]) is a pp expansion of Hilbert. By applying in succession the above display

and the right hand side of (41), we obtain

Q(Heyting→[Lf ]) = Q(Heyting∧,→) = ISL.

Hence, we conclude that ISL is a pp expansion of Hilbert. ⊠

Example 10.18 (Pseudocomplemented distributive lattices). A Heyting algebra A is said to

have depth ⩽ 2 when the chains in the poset of prime filters of A have size at most two. The

class of all Heyting algebras of depth ⩽ 2 forms a variety (see, e.g., [14, Thm. 4.1] and the

references therein). We will prove the following.
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Theorem 10.19. The variety of Heyting algebras of depth ⩽ 2 is a pp expansion of the

variety of pseudocomplemented distributive lattices.

Proof. Let PDL and Heyting2 be the varieties of pseudocomplemented distributive lattices and

of Heyting algebras of depth ⩽ 2, respectively. We recall that the members of (Heyting2)
fg
si

are precisely the Heyting algebras whose lattice reduct is a finite Boolean lattice adjoined

with a new top element(see [83, Thm. 2]). It follows from the characterization of subdirectly

irreducible Heyting algebras (see, e.g., [7, Thm. IX.4.5]) and the local finiteness of Heyting2
(see [79, 82]) that PDLfgsi is the class of ⟨∧,∨,¬, 0, 1⟩-reducts of (Heyting2)

fg
si . Lastly, from

Theorem 2.16 it follows that

PDL = Q(PDLfgsi) and Heyting2 = Q((Heyting2)
fg
si). (42)

Now, let f ∈ extpp(PDL) be the binary implicit operation of PDL given by Theorem 8.25.

Moreover, let → be a binary function symbol. Then the language Lf = LPDL ∪ {→} is an

f -expansion of LPDL, in which the role of gf is played by →.

Recall from Theorem 8.25 that for each A ∈ PDLfgsi the function fA is total and coincides

with the implication → of the unique Heyting algebra with the same lattice reduct as A. As

PDLfgsi is the class of ⟨∧,∨,¬, 0, 1⟩-reducts of (Heyting2)
fg
si , this yields

PDLfgsi [Lf ] = (Heyting2)
fg
si .

Finally, recall that f ∈ extpp(PDL) and that fA is total for each A ∈ PDLfgsi . Together with

the left hand side of (42), this allows us to apply Theorem 10.5, obtaining that Q(PDLfgsi [Lf ])

is a pp expansion of PDL. By applying in succession the above display and the right hand

side of (42), we obtain

Q(PDLfgsi [Lf ]) = Q((Heyting2)
fg
si) = Heyting2.

Hence, we conclude that Heyting2 is a pp expansion of PDL. ⊠

The rest of this section is devoted to proving Theorems 10.3, 10.4, 10.5, 10.6, and 10.7.

We postpone the proof of Theorem 10.3 and begin by proving Theorem 10.4.

Proof. Proposition 9.3 yields that

K[LF ] = {B : B is an LF -algebra such that B↾LK
∈ K and

B ⊨ φf (x1, . . . , xn, gf (x1, . . . , xn)) for each n-ary f ∈ F}.

Since Σ axiomatizes K, for every LF -algebra B we have that B↾LK
∈ K if and only if B ⊨ Σ.

Therefore, from the above display it follows that the set of formulas

Σ ∪ {φf (x1, . . . , xn, gf (x1, . . . , xn)) : f is an n-ary member of F}

axiomatizes K[LF ]. To show that M = K[LF ] it is sufficient to prove that K[LF ] is closed

under S. As K is a universal class, Theorem 2.1(iii) allows us to assume that Σ consists

of universal formulas. Together with the fact that each φf(x1, . . . , xn, gf(x1, . . . , xn)) is a

conjunction of equations, this implies that K[LF ] can be axiomatized by a set of universal

formulas. Therefore, K[LF ] is a universal class by Theorem 2.1(iii), and hence it is closed

under S. ⊠
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We are now ready to prove Theorem 10.3.

Proof. We first prove that if K is a universal class or quasivariety, then so is M. It suffices to

show that for each class operator O ∈ {U,Q} if K is closed under O, then S(K[LF ]) is closed

under O as well.

To this end, let O ∈ {U,Q} and assume that K is closed under O. Furthermore, let

N = {A ∈ K : fA is total for each f ∈ F}.

We begin with the next observation.

Claim 10.20. We have K = O(N).

Proof of the Claim. As O ∈ {U,Q} and K is closed under O, we known that K is a universal

class. Therefore, we can apply Theorem 8.4, obtaining that for each A ∈ K there exists

B ∈ K with A ⩽ B such that fB is total for each f ∈ ext(K). Since F ⊆ extpp(K) ⊆ ext(K)

by assumption, for each A ∈ K there exists B ∈ K with A ⩽ B such that fB is total for

each f ∈ F . Together with the definition of N, this yields K ⊆ S(N). As O ∈ {U,Q}, we

obtain K ⊆ O(N). On the other hand, from N ⊆ K and the assumption that K is closed under

O it follows that O(N) ⊆ K, whence K = O(N). ⊠

Since K is closed under O by assumption, the definition of N allows us to apply Propo-

sition 9.10, obtaining O(N[LF ]) = S((O(N))[LF ]). Together with Claim 10.20, this yields

O(N[LF ]) = S(K[LF ]). Hence, S(K[LF ]) is closed under O, as desired.

Now, we prove the last part of (ii). Assume that K is a quasivariety. We need to show

that Mrsi ⊆ S(Krsi[LF ]). Let

Nrsi = {A ∈ Krsi : fA is total for each f ∈ F}.

We rely on the following observation.

Claim 10.21. We have K = ISP(Nrsi).

Proof of the Claim. Since K is a quasivariety, it is closed under I,S, and P. Therefore, it

suffices to prove the inclusion K ⊆ ISP(Nrsi). To this end, consider A ∈ K. In view of

the Subdirect Decomposition Theorem 2.9 there exist a family {Ai : i ∈ I} ⊆ Krsi and an

embedding h : A →
∏

i∈I Ai. By Theorem 8.4 for each i ∈ I there exists Bi ∈ Krsi with

Ai ⩽ Bi such that fBi is total for each f ∈ ext(K). As F ⊆ ext(K) by assumption, this

guarantees that {Bi : i ∈ I} ⊆ Nrsi. Furthermore, from Ai ⩽ Bi for each i ∈ I it follows

that
∏

i∈I Ai ⩽
∏

i∈I Bi. Therefore, h can be viewed as an embedding of A into
∏

i∈I Bi.

Thus, we conclude that A ∈ ISP(Nrsi). ⊠

Since the quasivariety K is closed under ISP, the definition of Nrsi allows us to apply

Proposition 9.10, obtaining ISP(Nrsi[LF ]) = S((ISP(Nrsi))[LF ]). By Claim 10.21 this amounts

to ISP(Nrsi[LF ]) = S(K[LF ]). As M = S(K[LF ]), we conclude that ISP(Nrsi[LF ]) = M.

We are now ready to prove that Mrsi ⊆ S(Krsi[LF ]). Consider A ∈ Mrsi. Since M =

ISP(Nrsi[LF ]), there exist a family {Ai : i ∈ I} ⊆ Nrsi and an embedding h : A →
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i∈I(Ai[LF ]). Observe that h can be viewed as a subdirect embedding h : A →

∏
i∈I pi[h[A]]

whose factors belong to M because for each i ∈ I we have

pi[h[A]] ∈ S(Ai[LF ]) ⊆ S(Nrsi[LF ]) ⊆ ISP(Nrsi[LF ]) = M.

As A ∈ Mrsi, this implies that there exists i ∈ I such that the map pi ◦h : A → pi[h[A]] is an

isomorphism. Since pi[h[A]] ⩽ Ai[LF ] and Ai ∈ Nrsi, we obtain A ∈ IS(Nrsi[LF ]). Lastly,

applying in succession IS = SI, Proposition 9.8(i) for the case where O = I, the fact that Nrsi

is closed under I, and the inclusion Nrsi ⊆ Krsi, we conclude that

A ∈ IS(Nrsi[LF ]) = SI(Nrsi[LF ]) = S((I(Nrsi))[LF ]) = S(Nrsi[LF ]) ⊆ S(Krsi[LF ]),

as desired.

It remains to prove (iii). Assume that K is a variety and F ⊆ exteq(K). By Theorem 2.1(i)

there exists a set of equations Σ that axiomatizes K. Then Theorem 10.4 yields that M is

axiomatized by

Σ ∪ {φf (x1, . . . , xn, gf (x1, . . . , xn)) : f is an n-ary member of F},

where φf is the conjunction of equations defining f ∈ F . Consequently, M is axiomatized by

a set of equations. Thus, M is a variety by Theorem 2.1(i). ⊠

Then we prove Theorem 10.5.

Proof. We detail only the case in which O = U, as the case in which O = Q is handled

analogously. Accordingly, assume that K = U(N). As F ⊆ extpp(K) and LF is an F -expansion

of LK by assumption, the class S(K[LF ]) is a pp expansion of K. Therefore, it only remains

to show that S(K[LF ]) = U(N[LF ]). Since

N ⊆ {A ∈ K : fA is total for each f ∈ F}

by assumption, we can apply Proposition 9.10, obtaining U(N[LF ]) = S((U(N))[LF ]). As

K = U(N), this amounts to U(N[LF ]) = S(K[LF ]). ⊠

It only remains to prove Theorem 10.6. The proof hinges on the next observation, in which

a nonconstant term is simply a term that is not a constant.

Proposition 10.22. Let M be a pp expansion of a class of algebras K induced by F and LF .

Then the following conditions hold:

(i) for every constant c of M there exists a unary fc ∈ exteq(K) such that f
A↾LK
c is total and

cA = f
A↾LK
c (a) for all A ∈ K[LF ] and a ∈ A;

(ii) for every nonconstant term t of M there exists ft ∈ extpp(K) such that tA = f
A↾LK
t for

each A ∈ K[LF ];

(iii) for every f ∈ imppp(M) there exists f∗ ∈ imppp(K) such that fA = f
A↾LK
∗ for each

A ∈ K[LF ]. Furthermore, if f ∈ extpp(M), then f∗ can be chosen in extpp(K).

Proof. By assumption M is a pp expansion of K induced by F and LF . Therefore, LF is an

F-expansion of LK. Consequently, F ⊆ extpp(K) and LF is of the form LK ∪ {gf : f ∈ F}.

This fact will be used repeatedly in the proof.
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(i): Let c be a constant of M. Then c belongs to LF , which is an F -expansion of LK. As

F -expansions are obtained by adding only functions symbols of positive arity, it follows that

c ∈ LK. Then the equation φ(x, y) = y ≈ c defines a unary fc ∈ exteq(K) with the desired

properties.

(ii): We proceed by induction on the construction of the nonconstant term t(x1, . . . , xn).

In the base case, t = p(x1, . . . , xn) for a basic operation p of M. Therefore, p ∈ LF . As

LF = LK ∪ {gf : f ∈ F}, we have two cases: either p ∈ LK or there exists h ∈ F ⊆ extpp(K)

such that p = gh. In the first case, we let ft = ⟨pA : A ∈ K⟩ and, in the second, ft = h. In

both cases, ft ∈ extpp(K) and tA = f
A↾LK
t for each A ∈ K[LF ].

In the inductive step, t = p(t1, . . . , tm) for some m-ary p ∈ LF and terms ti(x1, . . . , xn) of

M. By the inductive hypothesis there exist fp, ft1 , . . . , ftm ∈ extpp(K) satisfying the condition

in the statement for p, t1, . . . , tm, respectively. Define ft as the composition fp(ft1 , . . . , ftm).

As fp, ft1 , . . . , ftm ∈ extpp(K), from Corollary 8.7 it follows that ft ∈ extpp(K) as well. Then

consider A ∈ K[LF ] and a1, . . . , an ∈ A. By the inductive hypothesis pA = f
A↾LK
p and

tAi = f
A↾LK
ti for each i ⩽ m. Therefore, for each i ⩽ m,

dom(f
A↾LK
p ) = dom(pA) = Am and dom(f

A↾LK
ti ) = dom(tAi ) = An.

Together with ft = fp(ft1 , . . . , ftm), this yields ⟨a1, . . . , an⟩ ∈ dom(f
A↾LK
t ) and

f
A↾LK
t (a1, . . . , an) = f

A↾LK
p (f

A↾LK
t1 (a1, . . . , an), . . . , f

A↾LK
tm (a1, . . . , an))

= pA(tA1 (a1, . . . , an), . . . , tAm(a1, . . . , an))

= tA(a1, . . . , an).

Hence, we conclude that tA = f
A↾LK
t .

(iii): Let f be an n-ary implicit operation of M defined by a pp formula

φ(x1, . . . , xn, y) = ∃z1, . . . , zk
l

j⩽m

tj ≈ sj, (43)

where each tj ≈ sj is an equation of M in variables x1, . . . , xn, z1, . . . , zk, y. For each j ⩽ m

let φtj (x1, . . . , xn+k+1, y) and φsj (x1, . . . , xn+k+1, y) be pp formulas of K defining the implicit

operations ftj and fsj of K given by (i) and (ii).6 Moreover, for each j ⩽ m define

αj = φtj(x1, . . . , xn, z1, . . . , zk, y, vj) ⊓ φsj(x1, . . . , xn, z1, . . . , zk, y, vj);

ψ = ∃z1, . . . , zk, v1, . . . , vm
l

j⩽m

αj.

Claim 10.23. For all A ∈ K[LF ] and a1, . . . , an, b ∈ A,

A ⊨ φ(a1, . . . , an, b) ⇐⇒ A↾LK
⊨ ψ(a1, . . . , an, b).

Proof of the Claim. As φ is the formula in (43), we have A ⊨ φ(a1, . . . , an, b) if and only if

there exist c1, . . . , ck ∈ A such that tAj (a1, . . . , an, c1, . . . , ck, b) = sAj (a1, . . . , an, c1, . . . , ck, b)

6When tj is a constant c, we let the pp formula φtj be y ≈ c (see the proof of (i)) and think of ftj as a

constant operation of arity n + k + 1. Similarly for sj when it is a constant.
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for each j ⩽ m. In view of (i) and (ii), the latter is equivalent to the demand that there exist

c1, . . . , ck ∈ A such that for each j ⩽ m,

⟨a1, . . . , an, c1, . . . , ck, b⟩ ∈ dom(f
A↾LK
tj ) ∩ dom(f

A↾LK
sj )

and

f
A↾LK
tj (a1, . . . , an, c1, . . . , ck, b) = f

A↾LK
sj (a1, . . . , an, c1, . . . , ck, b).

Since the formulas φtj and φsj define ftj and fsj , respectively, the definition of αj guarantees

that this happens precisely when there exist c1, . . . , ck ∈ A such that

A↾LK
⊨ ∃v1, . . . , vm

l

j⩽m

αj(a1, . . . , an, c1, . . . , ck, b, vj).

By the definition of ψ this amounts to the demand that A↾LK
⊨ ψ(a1, . . . , an, b). ⊠

Recall that φ defines the implicit operation f of M. Therefore, φ is functional in M

and, in particular, in K[LF ]. Together with Claim 10.23, this yields that ψ is functional

in {A↾LK
: A ∈ K[LF ]}. As ψ is equivalent to a pp formula by definition, we can apply

Corollary 3.11, obtaining that ψ defines some f∗ ∈ imppp(S({A↾LK
: A ∈ K[LF ]})). Then

recall that M is a pp expansion of K induced by F and LF and, therefore, F ⊆ extpp(K).

Consequently, we can apply Proposition 9.6, obtaining that K = S({A↾LK
: A ∈ K[LF ]}).

Hence,

f∗ ∈ imppp(S({A↾LK
: A ∈ K[LF ]})) = imppp(K).

Since φ and ψ define f and f∗, respectively, from Claim 10.23 it follows that for all

A ∈ K[LF ] and a1, . . . , an, b ∈ A,

⟨a1, . . . , an⟩ ∈ dom(fA) and fA(a1, . . . , an) = b

⇐⇒ A ⊨ φ(a1, . . . , an, b)

⇐⇒ A↾LK
⊨ ψ(a1, . . . , an, b)

⇐⇒ ⟨a1, . . . , an⟩ ∈ dom(f
A↾LK
∗ ) and f

A↾LK
∗ (a1, . . . , an) = b.

Hence, we conclude that fA = f
A↾LK
∗ . This concludes the proof of the first half of (iii).

Therefore, it only remains to prove that if f ∈ extpp(M), then f∗ ∈ extpp(K). Accordingly,

suppose that f ∈ extpp(M). Since we already proved that f∗ ∈ imppp(K), it suffices to show

that f∗ ∈ ext(K). To this end, consider A ∈ K and a1, . . . , an ∈ A. As K is the class of

LK-subreducts of M by Proposition 10.2, there exists B ∈ M such that A ⩽ B↾LK
. Since

f ∈ ext(M), B ∈ M, and a1, . . . , an ∈ A ⊆ B, there exists C ∈ M such that B ⩽ C and

⟨a1, . . . , an⟩ ∈ dom(fC). From C ∈ M = S(K[LF ]) it follows that there also exists D ∈ K[LF ]

with C ⩽ D. Since A ⩽ B↾LK
and B ⩽ C ⩽ D ∈ M and K is the class of LK-subreducts of

M, we have A ⩽ D↾LK
∈ K. Moreover, by applying Proposition 8.1 to ⟨a1, . . . , an⟩ ∈ dom(fC)

and C ⩽ D, we obtain ⟨a1, . . . , an⟩ ∈ dom(fD). Hence,

D ∈ K[LF ], ⟨a1, . . . , an⟩ ∈ dom(fD), and A ⩽ D↾LK
∈ K.

Together with the first half of condition (iii), the first two items in the above display imply

⟨a1, . . . , an⟩ ∈ dom(f
D↾LK
∗ ). As A ⩽ D↾LK

∈ K, we conclude that f∗ ∈ ext(K). ⊠
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We are now ready to prove Theorem 10.6.

Proof. Let M2 be a pp expansion of a pp expansion M1 of K. We will prove that M2 is also a

pp expansion of K. First, as M1 is a pp expansion of K, there exist F1 ⊆ extpp(K) and an

F1-expansion LF1 of LK such that M1 = S(K[LF1 ]). Similarly, as M2 is a pp expansion of

M1, there exist F2 ⊆ extpp(M1) and an F2-expansion LF2 of LF1 such that M2 = S(M1[LF2 ]).

Hence,

M1 = S(K[LF1 ]) and M2 = S(M1[LF2 ]). (44)

Since LF1 is an F1-expansion of LK and LF2 an F2-expansion of LF1 , we may assume that

LF1 = LK ∪ {gf : f ∈ F1} and LF2 = LF1 ∪ {gf : f ∈ F2}.

Consequently,

LF2 = LK ∪ {gf : f ∈ F1} ∪ {gf : f ∈ F2}. (45)

As F2 ⊆ extpp(M1) and M1 is a pp expansion of K, Proposition 10.22(iii) guarantees that

for every f ∈ F2 there exists f∗ ∈ extpp(K) such that

fA = f
A↾LK
∗ for each A ∈ K[LF1 ]. (46)

Since F1 ⊆ extpp(K) by assumption, the set

F = F1 ∪ {f∗ : f ∈ F2}

is a subset of extpp(K). Define gf∗ = gf for each f ∈ F2 and consider the following F -expansion

of LK:

LF = LK ∪ {gf : f ∈ F}.
Then the pair F and LF induces a pp expansion S(K[LF ]) of K. To conclude the proof, it

will be enough to show that M2 = S(K[LF ]), for in this case M2 would also be a pp expansion

of K.

First, observe that

LF2 = LK ∪ {gf : f ∈ F1} ∪ {gf : f ∈ F2}
= LK ∪ {gf : f ∈ F1} ∪ {gf∗ : f ∈ F2}
= LK ∪ {gf : f ∈ F}
= LF .

The above equalities are justified as follows. The first is (45), the second holds by the

definition of gf∗ for f ∈ F2, the third by the definition of F , and the fourth by that of LF .

This establishes LF2 = LF . Since LF2 and LF are, respectively, the languages of M2 and

S(K[LF ]), we conclude that these classes have the same language.

In view of the right hand side of (44), in order to prove that M2 = S(K[LF ]), it suffices to

show that

M1[LF2 ] ⊆ S(K[LF ]) and K[LF ] ⊆ M1[LF2 ]. (47)

We split the proof of the above display in two claims.

Claim 10.24. We have M1[LF2 ] ⊆ S(K[LF ]).
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Proof of the Claim. Consider A ∈ M1[LF2 ]. By the definition of M1[LF2 ] we have A↾LM1
∈

M1. As M1 = S(K[LF1 ]) by the left hand side of (44), there exists B ∈ K[LF1 ] with

A↾LM1
⩽ B. Furthermore, B↾LK

∈ K because B ∈ K[LF1 ]. Since S(K[LF ]) is a pp expansion

of K and B↾LK
∈ K, we can apply Proposition 9.6, obtaining some C ∈ K[LF ] such that

B↾LK
⩽ C↾LK

.

We will prove that A ⩽ C. Since C ∈ K[LF ], this will yield A ∈ S(K[LF ]), thus concluding

the proof of the inclusion M1[LF2 ] ⊆ S(K[LF ]). First, as LF = LF2 = LF1 ∪ {gf : f ∈ F2},

we have LF1 ⊆ LF . Therefore, from C ∈ K[LF ] it follows that C↾LF1
∈ K[LF1 ]. By

applying Proposition 9.5 to B,C↾LF1
∈ K[LF1 ] and B↾LK

⩽ C↾LK
= (C↾LF1

)↾LK
, we obtain

B ⩽ C↾LF1
. Together with A↾LM1

⩽ B and LM1 = LF1 , this yields A↾LF1
⩽ C↾LF1

.

Since the language of A and C is LF = LF1 ∪ {gf : f ∈ F2}, in order to prove that

A ⩽ C, it only remains to show that for all n-ary f ∈ F2 and a1, . . . , an ∈ A,

gAf (a1, . . . , an) = gCf (a1, . . . , an). (48)

To this end, consider an n-ary f ∈ F2 and a1, . . . , an ∈ A. We will show that

gAf (a1, . . . , an) = f
A↾LM1 (a1, . . . , an)

= fB(a1, . . . , an)

= f
B↾LK
∗ (a1, . . . , an)

= f
C↾LK
∗ (a1, . . . , an)

= gCf∗(a1, . . . , an)

= gCf (a1, . . . , an).

The equalities above are justified as follows. To prove the first, recall that A ∈ M1[LF2 ]

and f ∈ F2, whence f
A↾LM1 is a total function and gAf (a1, . . . , an) = f

A↾LM1 (a1, . . . , an).

To prove the second, observe that the assumption that f ∈ F2 ⊆ imp(M1), A↾LM1
⩽ B,

and A↾LM1
,B ∈ M1 allows us to apply Proposition 8.1 to the fact that ⟨a1, . . . , an⟩ ∈

dom(f
A↾LM1 ), obtaining ⟨a1, . . . , an⟩ ∈ dom(fB) and f

A↾LM1 (a1, . . . , an) = fB(a1, . . . , an).

The third equality follows from B ∈ K[LF1 ] and (46). To prove the fourth, observe that

f∗ ∈ imp(K), B↾LK
,C↾LK

∈ K, and B↾LK
⩽ C↾LK

. Therefore, we can apply Proposi-

tion 8.1 to the fact that ⟨a1, . . . , an⟩ ∈ dom(f
B↾LK
∗ ), obtaining ⟨a1, . . . , an⟩ ∈ dom(f

C↾LK
∗ )

and f
B↾LK
∗ (a1, . . . , an) = f

C↾LK
∗ (a1, . . . , an). The fifth holds because C ∈ K[LF ] and f∗ ∈ F .

Lastly, the sixth equality holds because gf∗ = gf by assumption. This concludes the proof of

(48). Hence, we obtain A ⩽ C, as desired. ⊠

Claim 10.25. We have K[LF ] ⊆ M1[LF2 ].

Proof of the Claim. Consider A ∈ K[LF ]. Then A↾LK
∈ K and fA↾LK is total for each f ∈ F .

As F1 ⊆ F , this implies that the algebra A↾LK
[LF1 ] is defined and belongs to K[LF1 ] and,

therefore, to M1 as well. We will prove that fA↾LK
[LF1

] is total for each f ∈ F2. To this end,

consider f ∈ F2. By first applying (46) to A↾LK
[LF1 ] ∈ K[LF1 ] and then observing that
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A↾LK
is the LK-reduct of A↾LK

[LF1 ], we obtain

fA↾LK
[LF1

] = f
(A↾LK

[LF1
])↾LK

∗ = f
A↾LK
∗ .

The function on the right hand side of the above display is total because A ∈ K[LF ] and

f∗ ∈ F (the latter by f ∈ F2 and the definition of F). Hence, we conclude that the left

hand side of the above display is also total, as desired. Since A↾LK
[LF1 ] ∈ M1 and fA↾LK

[LF1
]

is total for each f ∈ F2, the algebra (A↾LK
[LF1 ])[LF2 ] is defined and belongs to M1[LF2 ].

Therefore, in order to conclude the proof, it suffices to show that

A = (A↾LK
[LF1 ])[LF2 ]. (49)

To this end, recall that the language of these algebras is LF1 ∪ {gf : f ∈ F2} and their

universe is A. Moreover, recall that A ∈ K[LF ]. Then A = A↾LK
[LF ] and A↾LK

∈ K.

Together with F1 ⊆ F , this yields that the LF1-reduct of A is A↾LK
[LF1 ]. On the other

hand, the LF1-reduct of (A↾LK
[LF1 ])[LF2 ] is also A↾LK

[LF1 ] by construction. Therefore,

in order to prove the above display, it only remains to show that for all n-ary f ∈ F2 and

a1, . . . , an ∈ A,

gAf (a1, . . . , an) = g
(A↾LK

[LF1
])[LF2

]

f (a1, . . . , an). (50)

Consider an n-ary f ∈ F2 and a1, . . . , an ∈ A. We will prove that

gAf (a1, . . . , an) = gAf∗(a1, . . . , an)

= f
A↾LK
∗ (a1, . . . , an)

= f
(A↾LK

[LF1
])↾LK

∗ (a1, . . . , an)

= fA↾LK
[LF1

](a1, . . . , an)

= g
(A↾LK

[LF1
])[LF2

]

f (a1, . . . , an).

The above equalities are justified as follows. The first holds because gf∗ = gf for each

f ∈ F2 by definition, the second because A ∈ K[LF ] and f∗ ∈ F , the third because

A↾LK
= (A↾LK

[LF1 ])↾LK
, the fourth follows from (46) and A↾LK

[LF1 ] ∈ K[LF1 ], and the fifth

from f ∈ F2 and the definition of (A↾LK
[LF1 ])[LF2 ]. This concludes the proof of (50) and,

therefore, of (49). ⊠

As (47) is an immediate consequence of Claims 10.24 and 10.25, we are done. ⊠

The proof of Theorem 10.7 hinges on the following result, which describes how to lift

implicit operations to pp expansions.

Proposition 10.26. Let M be a pp expansion of a class of algebras K and f ∈ imp(K) defined

by a formula φ of LK. Let also f• be the partial function on M given by f• = ⟨fA↾LK : A ∈ M⟩.
Then the following conditions hold:

(i) f• is defined by φ and belongs to imp(M);

(ii) if f ∈ imppp(K), then f• ∈ imppp(M);

(iii) if K is a universal class and f ∈ ext(K), then f• ∈ ext(M).
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Proof. Throughout the proof we assume that f is n-ary.

(i): Observe that Proposition 10.2 implies that A↾LK
∈ K for every A ∈ M. Hence, f• is a

well-defined partial function on M. We show that f• is preserved by homomorphisms in M.

Consider a homomorphism h : A → B with A,B ∈ M and let a1, . . . , an ∈ A be such that

⟨a1, . . . , an⟩ ∈ dom(fA
• ). Since fA

• = fA↾LK , we have

⟨a1, . . . , an⟩ ∈ dom(fA↾LK ).

As h : A↾LK
→ B↾LK

is a homomorphism and f is an implicit operation of K, the above

display implies that

⟨h(a1), . . . , h(an)⟩ ∈ dom(fB↾LK ) and h(fA↾LK (a1, . . . , an)) = fB↾LK (h(a1), . . . , h(an)).

Together with fA
• = fA↾LK and fB

• = fB↾LK , this yields

⟨h(a1), . . . , h(an)⟩ ∈ dom(fB
• ) and h(fA

• (a1, . . . , an)) = fB
• (h(a1), . . . , h(an)).

Hence, f• is preserved by homomorphisms, as desired.

Lastly, we will prove that for all A ∈ M and a1, . . . , an, b ∈ A,

⟨a1, . . . , an⟩ ∈ dom(fA
• ) and fA

• (a1, . . . , an) = b

⇐⇒ ⟨a1, . . . , an⟩ ∈ dom(fA↾LK ) and fA↾LK (a1, . . . , an) = b

⇐⇒ A↾LK
⊨ φ(a1, . . . , an, b)

⇐⇒ A ⊨ φ(a1, . . . , an, b).

The first equivalence above holds by the definition of f•, the second because φ defines f , and

the third because φ is an LK-formula. In view of the above series of equivalences, φ defines

f•. As f• is preserved by homomorphisms, we conclude that f• ∈ imp(M).

(ii): Suppose that f ∈ imppp(K). Then we may assume that φ is a pp formula. It follows

from (i) that f• is defined by φ and belongs to imp(M), whence f• ∈ imppp(M).

(iii): Since M is a pp expansion of K, it is of the form S(K[LF ]) for some F ⊆ extpp(K) and

LF . Suppose that f ∈ ext(K). To show that f• ∈ ext(M), consider A ∈ M and a1, . . . , an ∈ A.

Since M = S(K[LF ]), there exists B[LF ] ∈ K[LF ] such that A ⩽ B[LF ]. As B ∈ K,

Theorem 8.4 yields C ∈ K such that B ⩽ C and gC is total for every g ∈ ext(K). In

particular,

C[LF ] is defined and ⟨a1, . . . , an⟩ ∈ dom(fC). (51)

By Proposition 9.5 from B ⩽ C it follows that B[LF ] ⩽ C[LF ]. Then A ⩽ B[LF ] ⩽ C[LF ]

with C[LF ] ∈ K[LF ] ⊆ M. Since C[LF ]↾LK
= C, the definition of f• yields f

C[LF ]
• = fC .

From (51) it follows that ⟨a1, . . . , an⟩ ∈ dom(f
C[LF ]
• ) and, therefore, f• ∈ ext(M). ⊠

We now proceed to prove Theorem 10.7.

Proof. Let M = S(K[LF ]) and LG = LK∪{gf : f ∈ G}. Define G• = {f• : f ∈ G −F}, where

f• = ⟨fA↾LK : A ∈ M⟩. Since G ⊆ extpp(K), Proposition 10.26 implies that G• ⊆ extpp(M).

Consider the pp expansion S(M[LG• ]) of M induced by G• and LG• , where LG• = LG and
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g
A[LG• ]
f = fA

• for all f ∈ G − F and A[LG• ] ∈ M[LG• ]. Since S(M[LG• ]) is a pp expansion of

M, to prove that S(K[LG]) is a pp expansion of M, it suffices to show that

S(M[LG• ]) = S(K[LG]). (52)

For the inclusion from left to right of (52) it is enough to show that M[LG• ] ⊆ S(K[LG]).

To this end, consider A ∈ M[LG• ]. Then A↾LF
∈ M = S(K[LF ]). Consequently, there exists

B ∈ K[LF ] such that A↾LF
⩽ B. As G ⊆ ext(K), Proposition 9.6 yields that K is the class

of subreducts of K[LG]. Together with B↾LK
∈ K (which holds because B ∈ K[LF ]), this

entails that there exists C[LG] ∈ K[LG] such that B↾LK
⩽ C.

We will prove that A ⩽ C[LG ]. First, from LK ⊆ LF , A↾LF
⩽ B and B↾LK

⩽ C it follows

that A↾LK
⩽ C. Therefore, it only remains to show that gAf (a1, . . . , an) = g

C[LG ]
f (a1, . . . , an)

for all n-ary f ∈ G and a1, . . . , an ∈ A. We have that

gAf (a1, . . . , an) = fA
• (a1, . . . , an)

= fA↾LK (a1, . . . , an)

= fC(a1, . . . , an)

= g
C[LG ]
f (a1, . . . , an).

The first equality above holds because A ∈ M[LG• ] and the second is a consequence of the

definition of f•. The third equality follows from Proposition 8.1 because A↾LK
⩽ C, and the

last from the interpretation of gf in K[LG]. Therefore, A ⩽ C[LG] ∈ K[LG]. We conclude

that M[LG• ] ⊆ S(K[LG]), as desired.

We now prove the inclusion from right to left of (52). It suffices to show that K[LG] ⊆
M[LG• ]. To this end, consider A ∈ K[LG]. Then fA↾LK is a total function for every f ∈ G.

In particular, we have that fA↾LK is total for every f ∈ F because F ⊆ G. It follows that

A↾LF
∈ K[LF ] ⊆ M and f

A↾LF
• is total for every f ∈ G −F . Then A↾LF

[LG• ] is defined and

belongs to M[LG• ]. So, it only remains to show that A = A↾LF
[LG• ]. Clearly, A and A↾LF

have the same LF -reduct. Moreover, for every f ∈ G − F we have that

gAf = fA↾LK = f
A↾LF
• = g

A↾LF [LG ]

f ,

where the first equality is a consequence of the interpretation of gf in K[LG], the second

follows from the definition of f• and the fact that (A↾LF
)↾LK

= A↾LK
, and the last one from

the interpretation of gf in M[LG• ]. Thus, K[LG] ⊆ M[LG• ], as desired. ⊠

11. The Beth companion

Recall that the strong Beth definability property is the demand that every implicit

operation be interpolated by a set of terms (see Definition 5.3). We shall now extend the

idea of interpolation to accommodate for situations in which the implicit operation and the

set of terms belong to different classes of algebras.

Definition 11.1. Let K and M be a pair of classes of algebras with LK ⊆ LM such that the

LK-reducts of M belong to K. We say that an n-ary implicit operation f of K is
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(i) interpolated in M by a set of n-ary terms {ti : i ∈ I} of M when for all A ∈ M and

⟨a1, . . . , an⟩ ∈ dom(fA↾LK ) there exists i ∈ I such that

fA↾LK (a1, . . . , an) = tAi (a1, . . . , an);

(ii) interpolated in M by a set of n-ary partial functions {gi : i ∈ I} of M when for all A ∈ M

and ⟨a1, . . . , an⟩ ∈ dom(fA↾LK ) there exists i ∈ I such that

⟨a1, . . . , an⟩ ∈ dom(gAi ) and fA↾LK (a1, . . . , an) = gAi (a1, . . . , an).

Remark 11.2. When K = M, part (i) of the above definition specializes to the familiar demand

that the implicit operation f be interpolated by the set of terms {ti : i ∈ I}. Notice that

part (ii) subsumes part (i), for term functions can be viewed as implicit operations (see

Example 3.8). However, we opted for splitting the definition in two halves for the sake of

clarity. Lastly, we remark that the above definition applies to the situation where M is a pp

expansion of K because in this case LK ⊆ LM and the LK-reducts of M belong to K (see

Proposition 10.2). ⊠

Recall that the notion of a pp expansion was introduced to address the following question:

is it possible to expand a given class of algebras K by introducing new function symbols for

some of its implicit operations so that

(i) every implicit operation of K becomes interpolable by a set of terms in the resulting

expansion M, and

(ii) the basic desiderata (D1) and (D2)7 are met?

This idea is made precise by the following definition.

Definition 11.3. A pp expansion M of a class of algebras K is said to be a Beth companion

of K when every implicit operation of K is interpolated in M by a set of terms of M.

The aim of this section is to prove a triplet of results on Beth companions. The first

governs the interplay between pp expansions and Beth companions.

Theorem 11.4. Let K be a universal class, M1 a pp expansion of K, and M2 a pp expansion

of M1. Then the following conditions hold:

(i) if M1 is a Beth companion of K, then M2 is a Beth companion of K;

(ii) if M2 is a Beth companion of M1, then M2 is a Beth companion of K.

In general, a quasivariety K need not possess a Beth companion (see Section 14). However,

when a Beth companion of K exists, the above result yields a description of a concrete Beth

companion of K.

Corollary 11.5. Let K be a universal class, F = extpp(K), and LF an F-expansion of LK.

Then K has a Beth companion if and only if S(K[LF ]) is a Beth companion of K.

The second result connects Beth companions with the strong Beth definability and the

strong epimorphism surjectivity properties as follows.

7See the first paragraph of Section 9.
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Theorem 11.6. The following conditions are equivalent for a pp expansion M of a universal

class K:

(i) M is a Beth companion of K;

(ii) M has the strong Beth definability property;

(iii) M has the strong epimorphism surjectivity property;

(iv) every member of imppp(K) is interpolated in M by a set of terms of M.

In addition, when K is a quasivariety, we can add the following equivalent condition:

(v) every member of imppp(K) is interpolated in M by a single term of M.

The last result in this section states that, in the setting of quasivarieties, Beth companions

are essentially unique (when they exist). To make this precise, we adapt the notion of term

equivalence (see, e.g., [11, p. 131]) to expresses that two pp expansions of K in possibly

distinct languages are essentially indistinguishable. Let M1 and M2 be a pair of pp expansions

of a class of algebras K. For i = 1, 2 let Ti be the set of terms of Mi with variables in

{xn : n ∈ N}. Let ρ : LM2 → T1 be a map that preserves the arities. For each LM1-algebra

A let ρ(A) be the LM2-algebra with universe A such that fρ(A) = ρ(f)A for each function

symbol f in LM2 . Similarly, given an arity-preserving map τ : LM1 → T2 and an LM2-algebra

B, we define an LM1-algebra τ(B). We say that M1 and M2 are faithfully term equivalent

relative to K if there exist arity-preserving maps τ : LM1 → T2 and ρ : LM2 → T1 such that

τ(f) = f(x1, . . . , xn) and ρ(f) = f(x1, . . . , xn) for each n-ary function symbol f in LK, and

for all A ∈ M1 and B ∈ M2 we have

(i) ρ(A) ∈ M2;

(ii) τ(B) ∈ M1;

(iii) τρ(A) = A;

(iv) ρτ(B) = B.

In view of the following theorem, from now on, we will talk about the Beth companion of

a quasivariety.

Theorem 11.7. All the Beth companions of a quasivariety K are faithfully term equivalent

relative to K.

Before proving these results, we shall illustrate their applicability by describing Beth

companions of familiar classes of algebras.

Example 11.8 (Beth companions). Our aim is to prove the next result, which describes Beth

companions of some familiar classes of algebras. Further examples will be given once sufficient

portions of the theory of Beth companions will become available. The curious reader may

consult Table 1, which summarizes compactly all the examples considered in this work.

Theorem 11.9. The following conditions hold:

(i) the variety of Abelian groups is the Beth companion of the quasivariety of cancellative

commutative monoids;

(ii) the variety of Boolean algebras is the Beth companion of the variety of bounded distributive

lattices;
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(iii) the variety of relatively complemented distributive lattices is the Beth companion of the

variety of distributive lattices;

(iv) the variety of implicative semilattices is the Beth companion of the variety of Hilbert

algebras;

(v) the variety of Heyting algebras of depth ⩽ 2 is the Beth companion of the variety of

pseudocomplemented distributive lattices;

(vi) every universal class with the strong epimorphism surjectivity property is a Beth com-

panion of itself.

Proof. (i): By Theorem 10.10 the variety AG of Abelian groups is a pp expansion of the

quasivariety CCMon of cancellative commutative monoids. Recall from Example 6.3 that

AG has the strong epimorphism surjectivity property. Hence, we can apply Theorem 11.6,

obtaining that AG is the Beth companion of CCMon.

(ii)–(v): Analogous to the proof of (i). For (ii), use Theorems 10.12(ii) and 7.5. For (iii),

use Theorems 10.12(i) and 7.5. For (iv), use Theorem 10.17 and the fact that the variety of

implicative semilattices has the strong epimorphism surjectivity property (see [42, Props. 81

& 82]). For (v), use Theorem 10.19 and the fact that the variety of Heyting algebras of

depth ⩽ 2 has the strong epimorphism surjectivity property (see [90, Thm. 8.1(3)]).

(vi): Consider a universal class K with the strong epimorphism surjectivity property. In

view of Example 10.8, the class K is a pp expansion of itself. Therefore, we can apply

Theorem 11.6, obtaining that K is a Beth companion of itself. ⊠

Remark 11.10. The following shows that the hypothesis that K is a quasivariety in The-

orem 11.7 cannot be replaced with the requirement that K is a universal class. Let

A = ⟨A;∧,∨, 0, 1⟩ be the two-element bounded lattice and K = U(A). Since A is fi-

nite and has no proper subalgebras, from Theorem 2.2 and Proposition 2.14 it follows that

K = U(A) = ISPu(A) = I(A). Therefore, every member of K lacks proper subalgebras because

it is isomorphic to A. Therefore, for all B ⩽ C ∈ K we have dK(B,C) = dK(C,C) = C.

Together with Proposition 6.6, this yields that K has the strong epimorphism surjectivity

property. Therefore, Theorem 11.9(vi) implies that K is a Beth companion of itself.

We will show that there exists another Beth companion M of K such that K and M are not

faithfully term equivalent relative to K. Since K is a class of bounded distributive lattices,

it follows from Theorem 3.20(ii) that taking complements yields a unary implicit operation

f of K defined by a conjunction of equations. As fB is total for every B ∈ I(A) = K, we

have f ∈ exteq(K). Let Lf = LK ∪ {¬} be an f -expansion of LK and M = S(K[Lf ]) the pp

expansion of K induced by f and Lf . As every member of K lacks proper subalgebras, so

does every member of K[Lf ], and hence M = K[Lf ]. Together with K = I(A) and the fact

that A[Lf ] is defined (because fA is total), this yields M = I(A[Lf ]). By arguing as above

we obtain that M has the strong epimorphism surjectivity property. Therefore, Theorem 11.6

implies that M is a Beth companion of K.

It only remains to show that M and K are not faithfully term equivalent relative to K.

Suppose the contrary, with a view to contradiction. Then let τ : LK → T1 and ρ : Lf → T2
be the maps witnessing the faithful term equivalence, where T1 and T2 are the sets of terms
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of Lf and LK, respectively, with variables in {xn : n ∈ N}. Recall that K = I(A) and

M = I(A[Lf ]). Therefore, A[Lf ] ∼= ρ(A) because ρ(A) ∈ M. Let h : ρ(A) → A[Lf ] be an

isomorphism. For every a ∈ A we have

h(ρ(¬)A(a)) = h(¬ρ(A)a) = ¬A[Lf ]h(a) = fA(h(a)).

Consequently, there exists a term t(x) of K (namely, ρ(¬)) such that h(tA(a)) = fA(h(a))

for every a ∈ A. Since fA(h(a)) is the complement of h(a) in the two-element bounded

lattice A, we have fA(h(a)) ̸= h(a) for every a ∈ A. Therefore, for every a ∈ A we obtain

h(tA(a)) ̸= h(a), and hence tA(a) ̸= a. From A = {0, 1} it follows that tA(1) = 0 and

tA(0) = 1. Since all the basic operations of A are order preserving in each component, tA is

order preserving in each component as well. Therefore, tA(0) ⩽ tA(1), a contradiction with

the fact that tA(1) = 0 and tA(0) = 1. Hence, K and M are not faithfully term equivalent

relative to K. In fact, the same argument shows that K and M are not even term equivalent

(see, e.g., [11, p. 131] for the definition of term equivalence). ⊠

Now, we turn our attention to proving Theorem 11.4.

Proof. Recall from the assumptions that M1 is a pp expansion of K and that M2 is a pp

expansion of M1. Therefore, M2 is also a pp expansion of K by Theorem 10.6. This fact will

be used repeatedly in the proof.

(i): Suppose that M1 is a Beth companion of K. We will prove that so is M2. Since M2 is a

pp expansion of K, it suffices to show that every implicit operation of K is interpolated in

M2 by a set of terms of M2. Accordingly, consider an n-ary f ∈ imp(K). As M1 is a Beth

companion of K, there exists a family {ti : i ∈ I} of M1 that interpolates f in M1. Since M2

is a pp expansion of M1, we know that {ti : i ∈ I} is also a set of terms of M2. We will prove

that it interpolates f in M2.

To this end, consider A ∈ M2 and a1, . . . , an ∈ A such that ⟨a1, . . . , an⟩ ∈ dom(fA↾LK ).

From LK ⊆ LM1 it follows that (A↾LM1
)↾LK

= A↾LK
. Therefore,

fA↾LK = f
(A↾LM1

)↾LK and ⟨a1, . . . , an⟩ ∈ dom(f
(A↾LM1

)↾LK ).

We will prove that A↾LM1
∈ M1. Recall from the assumptions that K is a universal class.

Therefore, so is its pp expansion M1 by Theorem 10.3(i). Together with the assumption that

M2 is a pp expansion of M1, this allows us to apply Proposition 9.6, obtaining A↾LM1
∈ M1, as

desired. Together with the above display and the assumption that {ti : i ∈ I} interpolates f

in M1, this implies that there exists i ∈ I such that fA↾LK (a1, . . . , an) = t
A↾LM1
i (a1, . . . , an) =

tAi (a1, . . . , an).

(ii): Assume that M2 is a Beth companion of M1. We will prove that M2 is a Beth companion

of K as well. As in the previous case, it suffices to show that every implicit operation of K is

interpolated in M2 by a family of terms of M2. Accordingly, consider an n-ary f ∈ imp(K).

By Proposition 10.26 there exists g ∈ imp(M1) such that gA = fA↾LK for each A ∈ M1.

Observe that g is interpolated in M2 by a family {ti : i ∈ I} of terms of M2 because M2 is a

Beth companion of M1. We will prove that the same family interpolates f in M2. To this

end, consider A ∈ M2 and a1, . . . , an ∈ A such that ⟨a1, . . . , an⟩ ∈ dom(fA↾LK ). Since K is
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a universal class, Theorem 10.3(i) implies that M1 is a universal class as well. As A ∈ M2

and M2 is a pp expansion of M1 we have A↾LM1
∈ M1 by Proposition 9.6. Furthermore,

(A↾LM1
)↾LK

= A↾LK
because LK ⊆ LM1 . Therefore,

g
A↾LM1 = f

(A↾LM1
)↾LK = fA↾LK and ⟨a1, . . . , an⟩ ∈ dom(g

A↾LM1 ).

As {ti : i ∈ I} interpolates g in M2, the above display guarantees the existence of some i ∈ I

such that fA↾LK (a1, . . . , an) = g
A↾LM1 (a1, . . . , an) = tAi (a1, . . . , an). ⊠

Then we prove Corollary 11.5.

Proof. It suffices to prove the implication from left to right, as the other one is straightforward.

Accordingly, let M be a Beth companion of K.

Claim 11.11. The class S(K[LF ]) is a pp expansion of K which, moreover, is term equivalent

to a Beth companion of K.

Proof of the Claim. Since M is a pp expansion of K, we may assume that it is induced by

some G ⊆ extpp(K) and G-expansion LG of LK. As F = extpp(K) by assumption, we have

G ⊆ extpp(K) = F . Then there exists an F -expansion L′
F of the form LG ∪ {gf : f ∈ F −G}.

Since G ⊆ F and LG ⊆ L′
F , Theorem 10.7 implies that S(K[L′

F ]) is a pp expansion of

M = S(K[LG]). Together with the assumption that M is a Beth companion of K, this allows

us to apply Theorem 11.4(i), obtaining that S(K[L′
F ]) is a Beth companion of K as well.

Lastly, the definition of L′
F guarantees that the classes S(K[LF ]) and S(K[L′

F ]) are term

equivalent. ⊠

Recall that S(K[LF ]) is a pp expansion of K by assumption. To prove that it is also a

Beth companion of K, consider some f ∈ imp(K). By Claim 11.11 the class S(K[LF ]) is term

equivalent to a class in which f is interpolated by a set of terms. By the definition of term

equivalence, this guarantees that f is also interpolated in S(K[LF ]) by a set of terms. ⊠

Next we prove Theorem 11.6.

Proof. Let M be a pp expansion of a universal class K of the form S(K[LF ]). Theorem 10.3(i)

implies that M is a universal class. So, conditions (ii) and (iii) are equivalent by Theorem 6.5.

Furthermore, the implication (i)⇒(iv) is straightforward.

(iv)⇒(ii): To prove that M has the strong Beth definability property, it suffices to show

that every implicit operation of M defined by a pp formula is interpolated by a set of terms.

For suppose that this is the case. As M is an elementary class, we can apply Propositions 5.2

and 5.4, obtaining that M has the strong Beth definability property, as desired. Then consider

an n-ary f ∈ imppp(M). By Proposition 10.22(iii) there exists g ∈ imppp(K) such that

fA = gA↾LK for each A ∈ K[LF ]. (53)

Applying (iv) to g ∈ imppp(K) yields a set {ti : i ∈ I} of terms of M that interpolates g

in M. We will show that {ti : i ∈ I} interpolates f as well. To this end, consider A ∈ M

and a1, . . . , an ∈ A such that ⟨a1, . . . , an⟩ ∈ dom(fA). Since A ∈ M = S(K[LF ]), we have
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A ⩽ B for some B ∈ K[LF ]. As f ∈ imp(M) and A,B ∈ M are such that A ⩽ B, from

Proposition 8.1 and ⟨a1, . . . , an⟩ ∈ dom(fA) it follows that

⟨a1, . . . , an⟩ ∈ dom(fB) and fA(a1, . . . , an) = fB(a1, . . . , an).

Furthermore, by applying (53) to the assumption that B ∈ K[LF ], we obtain fB = gB↾LK .

Together with the above display, this yields

⟨a1, . . . , an⟩ ∈ dom(gB↾LK ) and fA(a1, . . . , an) = gB↾LK (a1, . . . , an).

Since {ti : i ∈ I} interpolates g in M, from the left hand side of the above display and

B ∈ K[LF ] ⊆ M it follows that there exists i ∈ I such that gB↾LK (a1, . . . , an) = tBi (a1, . . . , an).

Together with the right hand side of the above display and the fact that A ⩽ B, this yields

fA(a1, . . . , an) = gB↾LK (a1, . . . , an) = tBi (a1, . . . , an) = tAi (a1, . . . , an).

Hence, we conclude that {ti : i ∈ I} interpolates f , as desired.

(ii)⇒(i): Suppose that M has the strong Beth definability property and consider an n-ary

f ∈ imp(K). We need to prove that f is interpolated in M by a set of terms of M. In view

of Proposition 10.26, there exists g ∈ imp(M) such that gA = fA↾LK for each A ∈ M. As M

has the strong Beth definability property, the implicit operation g is interpolated by a set of

terms {ti : i ∈ I} of M. We will show that this family interpolates f in M as well. Consider

A ∈ M and a1, . . . , an ∈ A such that ⟨a1, . . . , an⟩ ∈ dom(fA↾LK ). Together with gA = fA↾LK ,

this yields

⟨a1, . . . , an⟩ ∈ dom(gA) and fA↾LK (a1, . . . , an) = gA(a1, . . . , an).

Since g is interpolated by {ti : i ∈ I}, there exists i ∈ I such that gA(a1, . . . , an) =

tAi (a1, . . . , an). By the right hand side of the above display this amounts to fA↾LK (a1, . . . , an) =

tAi (a1, . . . , an). Hence, we conclude that f is interpolated by {ti : i ∈ I} in M.

Next we prove the last part of the statement. To this end, in the rest of the proof, we

assume that K is a quasivariety.

(v)⇒(iv): Straightforward.

(ii)⇒(v): Consider f ∈ imppp(K). In view of Proposition 10.26, there exists g ∈ imppp(M)

such that gA = fA↾LK for each A ∈ M. Observe that M is a quasivariety by Theorem 10.3(ii).

Together with the assumption that M has the strong Beth definability property and g ∈
imppp(M), this allows us to apply Proposition 5.6, obtaining that g is interpolated by a single

term t of M. An argument analogous to the one detailed in the proof of the implication

(ii)⇒(i) shows that t interpolates f in M as well (the only difference is that, in this case, the

role of the family {ti : i ∈ I} is taken over by the single term t). ⊠

It only remains to prove Theorem 11.7. The proof hinges on the next observation.

Remark 11.12. The strong connection provided by a faithful term equivalence guarantees

the preservation of many important properties. Let M1 and M2 be two pp expansions of K

that are faithfully term equivalent relative to K and suppose that the term equivalence is

witnessed by τ : LM1 → T2 and ρ : LM2 → T1. Then it is straightforward to verify that the

following conditions hold:
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(i) if h : A → B is a homomorphism between LM1-algebras, then h : ρ(A) → ρ(B) is a

homomorphism between LM2-algebras;

(ii) if A,B are LM1-algebras such that A ⩽ B, then ρ(A) ⩽ ρ(B);

(iii) if A ∈ M1, then A↾LK
= ρ(A)↾LK

;

(iv) if M1 and M2 are quasivarieties, then ConM1(A) = ConM2(ρ(A)) for every A ∈ M1;

(v) if M1 is a universal class, quasivariety, or variety, then so is M2;

(vi) M1 is a Beth companion of K if and only if M2 is a Beth companion of K.

Since the roles of ρ and τ are interchangeable, M1 and M2 may be swapped in the conditions

above. ⊠

We are now ready to prove Theorem 11.7.

Proof. Let M1 and M2 be a pair of Beth companions of a quasivariety K. We will prove that

M1 and M2 are faithfully term equivalent relative to K. For i = 1, 2 let Fi ⊆ extpp(K) be such

that Mi = S(K[LFi
]). We may assume that

LF1 = LK ∪ {gf : f ∈ F1} and LF2 = LK ∪ {gf : f ∈ F2}.

Then let Ti be the set of terms of LFi
with variables in {xn : n ∈ N}. Since K is a quasivariety,

Theorem 11.6 implies that for every n-ary f ∈ imppp(K) and i = 1, 2 there exists an n-ary

term Fi(f) ∈ Ti that interpolates f in Mi. Therefore, for every n-ary f ∈ imppp(K), A ∈ Mi

with i = 1, 2, and a1, . . . , an ∈ A,

⟨a1, . . . , an⟩ ∈ dom(fA↾LK ) implies fA↾LK (a1, . . . , an) = Fi(f)A(a1, . . . , an). (54)

Define τ : LF1 → T2 and ρ : LF2 → T1 by setting τ(f) = f(x1, . . . , xn) and ρ(f) =

f(x1, . . . , xn) for every n-ary f ∈ LK, and

τ(gf1) = F2(f1) and ρ(gf2) = F1(f2)

for each f1 ∈ F1 and f2 ∈ F2. We proceed to show that τ and ρ witness that M1 and M2

are faithfully term equivalent relative to K. Let F = F1 ∪ F2 and let LF be an F -expansion

of LK such that LF1 ,LF2 ⊆ LF . Recall that F = F2 ∪ F2 ⊆ extpp(K) by assumption.

Therefore, Theorem 10.7 implies that S(K[LF ]) is a pp expansion of both M1 = S(K[LF1 ])

and M2 = S(K[LF2 ]). To verify conditions (i) and (iii) in the definition of faithful term

equivalence, consider A ∈ M1. We need to prove that ρ(A) ∈ M2 and τ(ρ(A)) = A. Since

S(K[LF ]) is a pp expansion of M1, Proposition 10.2 implies that A is an LF1-subreduct

of S(K[LF ]). As every member of S(K[LF ]) is a subalgebra of a member of K[LF ], it

follows that there exists B ∈ K[LF ] such that A ⩽ B↾LF1
. Since M2 is a universal class by

Theorem 10.3(i) and S(K[LF ]) is also a pp expansion of M2, Proposition 10.2 implies that

B↾LF2
∈ M2.

We now show that ρ(A) ∈ M2. Observe that M2 is closed under subalgebras because it

is a pp expansion of K. Hence, it is sufficient to prove ρ(A) ⩽ B↾LF2
because B↾LF2

∈ M2.

Since A ⩽ B↾LF1
, from Remark 11.12(iii) it follows that

ρ(A)↾LK
= A↾LK

⩽ (B↾LF1
)↾LK

= B↾LK
= (B↾LF2

)↾LK
. (55)
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Therefore, it only remains to show that g
ρ(A)
f (a1, . . . , an) = g

B↾LF2
f (a1, . . . , an) for all n-ary

gf ∈ LF2 − LK and a1, . . . , an ∈ A. We have

g
ρ(A)
f (a1, . . . , an) = ρ(gf )A(a1, . . . , an)

= F1(f)A(a1, . . . , an)

= F1(f)
B↾LF1 (a1, . . . , an)

= f
(B↾LF1

)↾LK (a1, . . . , an)

= f
(B↾LF2

)↾LK (a1, . . . , an)

= g
B↾LF2
f (a1, . . . , an),

where the first two equalities hold by the definitions of ρ(A) and ρ(gf ), the third holds because

A ⩽ B↾LF1
, the fifth because (B↾LF1

)↾LK
= (B↾LF2

)↾LK
, and the last because B ∈ K[LF ]

implies B↾LF2
∈ K[LF2 ]. The fourth equality follows from (54) because (B↾LF1

)↾LK
=

(B↾LF2
)↾LK

and B↾LF2
∈ K[LF2 ] imply ⟨a1, . . . , an⟩ ∈ dom(f

(B↾LF1
)↾LK ). We conclude that

ρ(A) ⩽ B↾LF2
, and hence ρ(A) ∈ M2.

Next we prove that τ(ρ(A)) = A. By Remark 11.12(iii) we obtain

τ(ρ(A))↾LK
= ρ(A)↾LK

= A↾LK
.

Therefore, it remains to show that g
τ(ρ(A))
f = gAf for every n-ary gf ∈ LF1 − LK . Let

a1, . . . , an ∈ A. Then

g
τ(ρ(A))
f (a1, . . . , an) = τ(gf )ρ(A)(a1, . . . , an)

= F2(f)ρ(A)(a1, . . . , an)

= F2(f)
B↾LF2 (a1, . . . , an)

= f
(B↾LF2

)↾LK (a1, . . . , an)

= f
(B↾LF1

)↾LK (a1, . . . , an)

= g
B↾LF1
f (a1, . . . , an)

= gAf (a1, . . . , an),

where the first equality follows from the definition of τ(C) for an LF2-algebra C, the second

from the definition of τ(gf ), the third holds because ρ(A) ⩽ B↾LF2
as we established above,

the fifth because (B↾LF2
)↾LK

= (B↾LF1
)↾LK

, the sixth because B ∈ K[LF ] implies B↾LF1
∈

K[LF1 ], and the last because A ⩽ B↾LF1
. The fourth equality follows from (54) because

(B↾LF2
)↾LK

= (B↾LF1
)↾LK

and B↾LF1
∈ K[LF1 ] imply ⟨a1, . . . , an⟩ ∈ dom(f

(B↾LF2
)↾LK ). We

conclude that τ(ρ(A)) = A.

Thus, conditions (i) and (iii) in the definition of faithful term equivalence hold. The

proof that conditions (ii) and (iv) hold is analogous. Since τ(f) = f(x1, . . . , xn) and
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ρ(f) = f(x1, . . . , xn) for every n-ary f ∈ LK, we conclude that M1 and M2 are faithfully term

equivalent relative to K. ⊠

12. Structure theory

In this section, we address the following question: what do we gain by moving from a

quasivariety to its Beth companion? We will answer it by showing that not only does the

Beth companion of a quasivariety K inherit a significant portion of the structure theory of K,

but its structure theory is often much richer than that of K. To this end, it is convenient to

restrict our attention to the pp expansions that respect the structure of congruence lattices,

which we term congruence preserving. More precisely, recall that if M is a pp expansion

of a quasivariety K, then M is a quasivariety and K the class of LK-subreducts of M (see

Theorem 10.3(ii) and Proposition 10.2).

Definition 12.1. A pp expansion M of a quasivariety K is said to be congruence preserving

when ConM(A) = ConK(A↾LK
) for every A ∈ M.

Remark 12.2. Let M be a pp expansion of a quasivariety K. We will prove that M is congruence

preserving when ConK(A↾LK
) ⊆ ConM(A) for every A ∈ M. To this end, it suffices to show

that the reverse inclusion ConM(A) ⊆ ConK(A↾LK
) always holds for each A ∈ M. Consider

θ ∈ ConM(A). The inclusion LK ⊆ LM guarantees that θ is a congruence of A↾LK
. Moreover,

since θ is an M-congruence of A, we have A/θ ∈ M. Thus, (A↾LK
)/θ = (A/θ)↾LK

∈ M↾LK
⊆ K.

Consequently, we conclude that θ ∈ ConK(A↾LK
). ⊠

Although pp expansions of quasivarieties need not be congruence preserving in general

(see [27, Thm. 2.1]), the next result explains why most concrete pp expansions are indeed

congruence preserving. To this end, it is convenient to introduce the following concept.

Definition 12.3. A pp expansion M of a class of algebras K is said to be equational when it is

faithfully term equivalent relative to K to a pp expansion of K induced by some F ⊆ exteq(K)

and LF .

We also recall that a quasivariety K has the relative congruence extension property when

for all A ⩽ B ∈ K and θ ∈ ConK(A) there exists ϕ ∈ ConK(B) such that θ = ϕ↾A. When K

is a variety, we simply say that K has the congruence extension property.8

Theorem 12.4. Let M be a pp expansion of a quasivariety K and assume that one of the

following conditions holds:

(i) M is equational;

(ii) K has the relative congruence extension property.

Then M is congruence preserving.

We say that a Beth companion is congruence preserving when it is a congruence preserving

pp expansion. Similarly, we call a Beth companion equational when it is an equational pp

8Although we will not rely on this fact, we remark that the relative congruence extension property persists

in pp expansions of quasivarieties (see [27, Prop. 3.18]).
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expansion. It is an immediate consequence of Remark 11.12(vi) that a Beth companion of a

class of algebras K is equational if and only if it is faithfully term equivalent relative to K to

a Beth companion of K induced by some F ⊆ exteq(K) and LF . In view of Theorem 12.4, all

the Beth companions considered so far are congruence preserving as we proceed to illustrate.

Example 12.5 (Congruence preserving Beth companions). Notice that all the Beth companions

of varieties mentioned in Theorem 11.9 are equational (in fact, they are all induced by sets of

implicit operations defined by conjunctions of equations). Therefore, Theorem 12.4 guarantees

that they are congruence preserving. ⊠

As the following example shows, being equational is not a necessary condition for a Beth

companion to be congruence preserving.

Example 12.6 (Congruence preserving and not equational Beth companion). For every n ∈ Z+

let An be the unique Heyting algebra whose lattice reduct is obtained by adding a new

maximum 1 to the powerset lattice ⟨P({1, . . . , n});∩,∪⟩. Then for every n ⩾ 3 the variety

V(An) admits a Beth companion that is congruence preserving and not equational, as shown

in [27, Thm. 3.3]. Notably, the variety V(An) can be equivalently described as the variety of

Heyting algebras of depth ⩽ 2 (see Example 10.18) satisfying the bounded width ⩽ n axiom

in the variables x1, . . . , xn+1, namely, the equation

n+1∨
i=1

(
xi →

∨
j ̸=i

xj
)
≈ 1. ⊠

We have seen in Section 4 that the amalgamation property allows us to eliminate existentials

in certain situations. An instance of this phenomenon is described in the following theorem.

Theorem 12.7. Let K be a quasivariety with the amalgamation property. Then every pp

expansion of K is equational, congruence preserving, and has the amalgamation property.

The congruence preserving pp expansions of a quasivariety K inherit a substantial portion of

the structure theory of K, namely, the one related to the structure of lattices of K-congruences.

The next concepts are instrumental to make this idea precise. Let K be a quasivariety. A

congruence equation is a formal equation in the binary symbols ∧,∨, and ◦. A congruence

equation is valid in an algebra A relative to K when it becomes true whenever we interpret

the variables of the equation as K-congruences of A, and for arbitrary binary relations α and

β on A, we interpret α∧β, α∨β, and α ◦β as α∩β, CgAK (α∪β), and α ◦β, respectively. We

say that a congruence equation is valid in K when it is valid relative to K in every member of

K [99, 108] (see also [74]). For instance, a quasivariety K is relatively congruence distributive

precisely when the congruence equation (x∨ y)∧ (x∨ z) ≈ x∨ (y ∧ z) is valid in K. Similarly,

a variety K is congruence permutable if and only if the congruence equation x ◦ y = y ◦ x is

valid in K.

Theorem 12.8. Let M be a congruence preserving pp expansion of a quasivariety K. Then

every congruence equation valid in K is valid in M.

Proof. Immediate from the definitions of a congruence preserving pp expansion and of a

congruence equation. ⊠
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In addition, congruence preserving pp expansions preserve and reflect the property of

“being relatively (finitely) subdirectly irreducible” (cf. Theorem 10.3(ii)) and preserve the

property of “being a variety”. We recall that the latter fails for arbitrary pp expansions (see

[27, Thm. 2.1]). More precisely, we will prove the following.

Theorem 12.9. Let M be a congruence preserving pp expansion of a quasivariety K. Then

Mrfsi = {A ∈ M : A↾LK
∈ Krfsi} and Mrsi = {A ∈ M : A↾LK

∈ Krsi}.

Moreover, if K is a variety, then M is a variety.

As we mentioned, the aim of this section is to explain what we gain by moving from

a quasivariety to its Beth companion. Our main result states that not only does every

congruence preserving Beth companion of a quasivariety K inherit a significant portion of the

structure theory of K (see Theorems 12.8 and 12.9), but it often gains remarkable properties

in comparison to those of K. More precisely, we will establish the following.

Theorem 12.10. Let K be a relatively congruence distributive quasivariety for which Krfsi is

closed under nontrivial subalgebras. Then every congruence preserving Beth companion M of

K is an arithmetical variety with the congruence extension property such that Mfsi is closed

under nontrivial subalgebras.

In view of Theorem 12.10, under reasonable assumptions, the structure theory of a

congruence preserving Beth companion M of a quasivariety K enhances that of K as follows:

M turns out to be a variety (as opposed to a quasivariety) which, moreover, is arithmetical (as

opposed to relatively congruence distributive only) and possesses the congruence extension

property.

Let us illustrate the effect of Theorem 12.10 in the setting of filtral quasivarieties. A variety

K is said to be discriminator when there exist a class of algebras M and a quaternary term t

such that K = V(M) and tA is the quaternary discriminator function on A for every A ∈ M

[22, 107] (see also [21, Sec. IV.9]). Examples of discriminator varieties include the variety

of Boolean algebras and for each n ∈ N the variety of rings satisfying the equation x ≈ xn

(see, e.g., [20, pp. 179–180]). The importance of discriminator varieties derives from the

fact that they admit a general representation theorem in terms of Boolean products with

subdirectly irreducible factors [21, Thm. IV.9.4] (see also [104]). While every discriminator

variety is filtral (see, e.g., [10, p. 101]), the converse need not hold in general: for instance,

while the variety of (bounded) distributive lattices is filtral, it is not a discriminator variety.

However, its Beth companion, the variety of Boolean algebras, is a discriminator variety.

From Theorem 12.10 we will infer that this is true in general.

Corollary 12.11. Every Beth companion of a relatively filtral quasivariety is a discriminator

variety.

Before proving these results, let us illustrate the applicability of Theorem 12.10 with a

more concrete example from ring theory.

Example 12.12 (Reduced commutative rings of characteristic zero). We recall that a ring

(resp. meadow) A has characteristic n ∈ Z+ when n is the least m ∈ Z+ such that m1 = 0.



THE THEORY OF IMPLICIT OPERATIONS 87

If A is trivial or has not characteristic n for any n ∈ Z+, we say that it has characteristic

zero. In other words, A has characteristic zero if and only if it validates the quasiequation

1n ≈ 0 → x ≈ y for every n ∈ Z+. Consequently, the class RCRing0 of reduced commutative

rings of characteristic zero forms a quasivariety.

We will make use of the following observations established in [30]. The quasivariety

RCRing0 is relatively congruence distributive and its relatively finitely subdirectly irreducible

members are precisely the integral domains of characteristic zero, where an integral domain

is a commutative ring validating the formulas 0 ̸≈ 1 and xy ≈ 0 → (x ≈ 0 ⊔ y ≈ 0).

Furthermore, the class Meadow0 of meadows of characteristic zero is a congruence preserving

Beth companion of RCRing0.

As the class of integral domains of characteristic zero is closed under nontrivial subalgebras,

from Theorem 12.10 it follows that Meadow0 is an arithmetical variety with the congruence

extension property. None of these facts holds for RCRing0, which is a proper quasivariety

without the relative congruence extension property (congruence permutability is a property

of varieties only), as we proceed to illustrate.

First, observe that the ring of integers Z is an integral domain of characteristic zero, while

its quotient induced by the ideal pZ has characteristic p. Consequently, RCRing0 is a proper

quasivariety. To show that RCRing0 lacks the relative congruence extension property, consider

the polynomial ring Z[x] and observe that it is an integral domain of characteristic zero and,

therefore, belongs to RCRing0. Then let θ be the congruence of Z[x] generated by the pair

⟨x, 0⟩. As Z[x]/θ ∼= Z, we obtain that θ is an RCRing0-congruence of Z[x]. On the other

hand, observe that Z[x] is a subalgebra of a field A of characteristic zero because it is an

integral domain of characteristic zero (see, e.g., [4, Thm. 11.7.2]). Since A is a field, it does

not possess a congruence extending θ. Hence, we conclude that RCRing0 lacks the relative

congruence extension property, as desired. ⊠

Next we prove Theorems 12.4, 12.7, 12.9, and 12.10 and Corollary 12.11. The proof of

Theorem 12.4 hinges upon the next pair of observations.

Proposition 12.13. Let M be a pp expansion of a quasivariety K induced by F ⊆ extpp(K)

and LF . Then ConM(A) = ConK(A↾LK
) for every A ∈ K[LF ].

Proof. Consider A ∈ K[LF ]. As the inclusion ConM(A) ⊆ ConK(A↾LK
) always holds (see

Remark 12.2), we detail only the proof of the reverse inclusion. Consider θ ∈ ConK(A↾LK
).

Then (A↾LK
)/θ ∈ K. Since F ⊆ extpp(K) and K is a quasivariety, by Proposition 9.6

there exists B ∈ K[LF ] such that (A↾LK
)/θ ⩽ B↾LK

. Therefore, the canonical surjection

h : A↾LK
→ A↾LK

/θ can be viewed as a homomorphism h : A↾LK
→ B↾LK

. As A,B ∈ K[LF ],

Proposition 9.5 guarantees that h is also a homomorphism from A to B. Together with

B ∈ M and Ker(h) = θ, this yields that θ is an M-congruence of A. ⊠

Proposition 12.14. Let M1 and M2 be a pair of pp expansions of a quasivariety K. Assume

that M1 and M2 are faithfully term equivalent relative to K. Then M1 is congruence preserving

if and only if so is M2.
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Proof. Let T1 and T2 be the sets of terms, respectively of M1 and M2, with variables in

{xn : n ∈ N}. Moreover, let τ : LM1 → T2 and ρ : LM2 → T1 be the maps witnessing the fact

that M1 and M2 are faithfully term equivalent relative to K.

By symmetry it suffices to show that if M1 is congruence preserving, then so is M2. Assume

that M1 is congruence preserving. Then for every A ∈ M2, we have

ConM2(A) = ConM1(τ(A)) = ConK(τ(A)↾LK
) = ConK(A↾LK

),

where the first equality follows from Remark 11.12(iv), the second from the assumption that

M1 is congruence preserving, and the last from τ(A)↾LK
= A↾LK

(which holds because τ and

ρ witness a term equivalence that is faithful relative to K). ⊠

We are now ready to prove Theorem 12.4.

Proof. (i): Since M is equational, there exists a pp expansion N of K induced by some

F ⊆ exteq(K) and LF such that M is faithfully term equivalent to N relative to K. We can

apply Theorem 10.4, obtaining N = K[LF ]. Therefore, ConN(A) = ConK(A↾LK
) for every

A ∈ N by Proposition 12.13. Hence, we conclude that N is congruence preserving. From

Proposition 12.14 it follows that M is congruence preserving as well.

(ii): In view of Remark 12.2, it suffices to show that ConK(A↾LK
) ⊆ ConM(A) for each

A ∈ M. To this end, consider A ∈ M and θ ∈ ConK(A↾LK
). As M is a pp expansion of K, it

is of the form S(K[LF ]). Since A ∈ M, this implies the existence of some B ∈ K[LF ] such

that A ⩽ B. Clearly, A↾LK
⩽ B↾LK

∈ K. Therefore, from the assumption that K has the

relative congruence extension property it follows that there exists ϕ ∈ ConK(B↾LK
) such that

θ = ϕ↾A. Since B ∈ K[LF ], we can apply Proposition 12.13, obtaining ϕ ∈ ConK(B↾LK
) =

ConM(B). Together with A ⩽ B, this yields ϕ↾A ∈ ConM(A). As θ = ϕ↾A, we conclude that

θ ∈ ConM(A). ⊠

We now prove Theorem 12.7.

Proof. Let M be a pp expansion of K of the form S(K[LF ]). From the assumption that K has

the amalgamation property and Theorem 4.3(i) it follows that every f ∈ F ⊆ extpp(K) is

interpolated by some f∗ ∈ impeq(K).

Consider the set of implicit operations

F∗ = {f∗ : f ∈ F}

of K. We will prove that F∗ ⊆ exteq(K). As F∗ ⊆ impeq(K) by definition, it suffices to

show that F∗ ⊆ ext(K). Consider an n-ary f∗ ∈ F∗, A ∈ K, and a1, . . . , an ∈ A. Since

f ∈ F ⊆ ext(K), there exists B ∈ K with A ⩽ B such that ⟨a1, . . . , an⟩ ∈ dom(fB).

Consequently, ⟨a1, . . . , an⟩ ∈ dom(fB
∗ ) because f∗ interpolates f . Hence, f∗ is extendable.

Together with Theorem 10.4, the inclusion F∗ ⊆ exteq(K) implies that M∗ = K[LF∗ ] is a

pp expansion of K. Therefore, to prove that M is an equational pp expansion of K, it only

remains to show that the pp expansions M∗ and M are faithfully term equivalent relative to

K.
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Since LF is an F-expansion of LK and LF∗ is an F∗-expansion of LK, we may assume

that

LF = LK ∪ {gf : f ∈ F} and LF∗ = LK ∪ {hf∗ : f∗ ∈ F∗}.
Let T and T∗ be the sets of terms, respectively of LF and LF∗ , with variables in {xn : n ∈ N}.

We will prove that M and M∗ are faithfully term equivalent relative to K as witnessed by the

maps τ : LF → T∗ and ρ : LF∗ → T defined for every p ∈ LF and q ∈ LF∗ as

τ(p) =

{
p(x1, . . . , xn) if p ∈ LK;

hf∗(x1, . . . , xn) if p = gf for some f ∈ F ;

ρ(q) =

{
q(x1, . . . , xn) if q ∈ LK;

gf (x1, . . . , xn) if q = hf∗ for some f∗ ∈ F∗.

To this end, we will use without further notice the fact that M = S(K[LF ]) and M∗ =

S(K[LF∗ ]) = K[LF∗ ].

The definition of τ and ρ guarantees the validity of conditions (iii) and (iv) in the definition

of faithful term equivalence. Therefore, it only remains to show that for all A ∈ S(K[LF ])

and B ∈ S(K[LF∗ ]),

ρ(A) ∈ S(K[LF∗ ]) and τ(B) ∈ S(K[LF ]). (56)

We begin by showing that

ρ(A) ∈ K[LF∗ ], for every A ∈ K[LF ]. (57)

Consider A ∈ K[LF ]. Then there exists B ∈ K such that A = B[LF ]. We will prove that

fB
∗ is total for every f∗ ∈ F∗. Consider f∗ ∈ F∗. Then f ∈ F by the definition of F∗. Since

B[LF ] is well defined, the function fB is total. As f∗ interpolates f , this implies fB
∗ = fB,

whence fB
∗ is total as well. Consequently, the algebra B[LF∗ ] is defined and belongs to

K[LF∗ ]. Moreover, for every f ∈ F we have

g
B[LF ]
f = fB = fB

∗ = h
B[LF∗ ]
f∗

.

Together with the definition of ρ and the fact that B is the LK-reduct of both B[LF ] and

B[LF∗ ], the above display guarantees that ρ(A) = ρ(B[LF ]) = B[LF∗ ] ∈ K[LF∗ ], thus

establishing (57).

Next we prove the left hand side of (56). Consider A ∈ S(K[LF ]). Then A ⩽ A′ for

some A′ ∈ K[LF ]. By (57) we have ρ(A′) ∈ K[LF∗ ]. Moreover, from A ⩽ A′ it follows

that ρ(A) ⩽ ρ(A′) (see Remark 11.12(ii)). Together with ρ(A′) ∈ K[LF∗ ], this yields

ρ(A) ∈ S(K[LF∗ ]), as desired.

It only remains to prove the right hand side of (56). Consider B ∈ S(K[LF∗ ]) = K[LF∗ ].

Then B↾LK
∈ K. As F ⊆ ext(K) and K is a quasivariety by assumption, we can apply

Theorem 8.4, obtaining some C ∈ K with B↾LK
⩽ C such that fC is total for every

f ∈ F . Consequently, the algebra C[LF ] is defined and belongs to K[LF ]. Therefore,

ρ(C[LF ]) ∈ K[LF∗ ] by (57). Moreover,

B↾LK
⩽ C = C[LF ]↾LK

= ρ(C[LF ])↾LK
,
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where the last equality holds because ρ sends each n-ary f ∈ LK to f(x1, . . . , xn) by

definition. Together with B, ρ(C[LF ]) ∈ K[LF∗ ], the above display allows us to apply

Proposition 9.5, obtaining B ⩽ ρ(C[LF ]) and, therefore, τ(B) ⩽ τ(ρ(C[LF ])) (see Remark

11.12(ii)). Since the definition of τ and ρ ensures that C[LF ] = τ(ρ(C[LF ])), we obtain

that τ(B) ⩽ C[LF ] ∈ K[LF ], whence τ(B) ∈ S(K[LF ]). We conclude that M∗ and M are

faithfully term equivalent relative to K.

Since M∗ is induced by F∗ ⊆ exteq(K) and LF∗ , we obtain that M is an equational pp

expansion of K. Then Theorem 12.4 implies that M is congruence preserving.

It remains to prove that M has the amalgamation property. Consider a pair of embeddings

f : A → B and g : A → C with A,B,C ∈ M. As B,C ∈ M = S(K[LF ]), there exist

B′,C ′ ∈ K[LF ] and a pair of embeddings i1 : B → B′ and i2 : C → C ′. Let f ′ : A → B′ and

g′ : A → C ′ be the embeddings defined as f ′ = i1 ◦ f and g′ = i2 ◦ g. Observe that f ′ and g′

can be viewed as embeddings f ′ : A↾LK
→ B′↾LK

and g′ : A↾LK
→ C ′↾LK

. Furthermore, from

A,B′,C ′ ∈ M and Proposition 10.2 it follows that A↾LK
,B′↾LK

,C ′↾LK
∈ K. Therefore, the

assumption that K has the amalgamation property guarantees the existence of some D ∈ K

and embeddings hf : B′↾LK
→ D and hg : C ′↾LK

→ D such that hf ◦ f ′ = hg ◦ g′.

B↾LK
B′↾LK

A↾LK
D

C↾LK
C ′↾LK

i1

hff

g

i2

hg

Recall that D ∈ K and that M = S(K[LF ]) is a pp expansion of K. Therefore, by

Proposition 10.2 there exists D′ ∈ K[LF ] such that D ⩽ D′↾LK
. Let h′f : B′↾LK

→ D′↾LK

and h′g : C ′↾LK
→ D′↾LK

be the embeddings obtained by composing hf and hg, respectively,

with the inclusion map of D into D′↾LK
. Since B′,C ′,D′ ∈ K[LF ], Proposition 9.5 implies

that h′f : B′ → D′ and h′g : C ′ → D′ are also embeddings. Moreover, from hf ◦ f ′ = hg ◦ g′ it

follows that h′f ◦ f ′ = h′g ◦ g′. Together with f ′ = i1 ◦ f , and g′ = i2 ◦ g, this yields

h′f ◦ i1 ◦ f = h′f ◦ f ′ = h′g ◦ g′ = h′g ◦ i2 ◦ g.

In view of the above display and of D′ ∈ K[LF ] ⊆ M, the pair of embeddings h′f ◦ i1 : B → D′

and h′g ◦ i2 : C → D′ establishes the amalgamation property for M.

B B′

A D′

C C ′

i1

h′
ff

g
i2

h′
g

⊠
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Next we prove Theorem 12.9.

Proof. We begin by proving that Mrfsi = {A ∈ M : A↾LK
∈ Krfsi}, namely, that for every

A ∈ M,

A ∈ Mrfsi ⇐⇒ A↾LK
∈ Krfsi. (58)

To this end, consider A ∈ M and observe that A↾LK
∈ K by Proposition 10.2. From

Proposition 2.10 it follows that

A ∈ Mrfsi ⇐⇒ idA ∈ IrrM(A);

A↾LK
∈ Krfsi ⇐⇒ idA ∈ IrrK(A↾LK

).

Observe that ConM(A) = ConK(A↾LK
) because M is a congruence preserving pp expansion of

K by assumption. Therefore, IrrM(A) = IrrK(A↾LK
). Together with the above display, this

establishes (58), as desired. The proof that Mrsi = {A ∈ M : A↾LK
∈ Krsi} is analogous and,

therefore, omitted.

It only remains to prove the last part of the statement. Suppose that K is a variety.

From Theorem 10.3(ii) it follows that M is a quasivariety. Therefore, it remains to show

that M is closed under homomorphic images. By Proposition 2.5 it suffices to prove that

Con(A) = ConM(A) for every A ∈ M. To this end, observe that for every A ∈ M,

Con(A) ⊆ Con(A↾LK
) = ConK(A↾LK

) = ConM(A),

where the first step holds by Remark 12.2, the second follows from A↾LK
∈ K (see Propo-

sition 10.2) and the assumption that K is a variety, and the third from A ∈ M and the

assumption that M is a congruence preserving pp expansion of K. Thus, Con(A) = ConM(A),

as desired. ⊠

Our next goal is to prove Theorem 12.10. To this end, it is convenient to establish the

following technical observation first.

Proposition 12.15. Let K be a relatively congruence distributive quasivariety for which

Krfsi is closed under nontrivial subalgebras. Moreover, consider A ∈ K and B ⩽ A × A

with projection maps p1, p2 : B → A such that for every ⟨a, b⟩ ∈ B we have ⟨a, a⟩, ⟨b, b⟩ ∈ B.

Assume that K has the strong epimorphism surjectivity property. Then B = CgAK (B)∩(p1[B]×
p2[B]).

Proof. As the inclusion B ⊆ CgAK (B) ∩ (p1[B] × p2[B]) always holds, we detail the proof of

the reverse inclusion. Consider ⟨a, b⟩ ∈ CgAK (B) ∩ (p1[B] × p2[B]). We need to prove that

⟨a, b⟩ ∈ B. Suppose the contrary, with a view to contradiction.

From Proposition 2.8 it follows that CgAK (B) is the universe of a member CgAK (B)∗ of

K such that CgAK (B)∗ ⩽ A × A is a subdirect product. Together with B ⊆ CgAK (B) and

the assumption that B ⩽ A × A, this yields B ⩽ CgAK (B)∗. As B ⩽ CgAK (B)∗ ∈ K and

⟨a, b⟩ ∈ CgAK (B) − B, we can apply the assumption that K has the strong epimorphism

surjectivity property, obtaining a pair of homomorphisms g, h : CgAK (B)∗ → C with C ∈ K

such that

g↾B = h↾B and g(⟨a, b⟩) ̸= h(⟨a, b⟩). (59)
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In view of Remark 6.2, we may further assume that C ∈ Krfsi.

Since ⟨a, b⟩ ∈ p1[B] × p2[B] by assumption, there exist c, d ∈ A such that ⟨a, c⟩, ⟨d, b⟩ ∈ B.

By the assumptions this yields ⟨a, a⟩, ⟨b, b⟩ ∈ B. Consequently, the left hand side of (59)

guarantees that g(⟨a, a⟩) = h(⟨a, a⟩) and g(⟨b, b⟩) = h(⟨b, b⟩). By the right hand side of (59)

this implies that

either g(⟨a, b⟩) ̸= g(⟨a, a⟩) or h(⟨a, b⟩) ̸= h(⟨a, a⟩) (60)

and

either g(⟨a, b⟩) ̸= g(⟨b, b⟩) or h(⟨a, b⟩) ̸= h(⟨b, b⟩). (61)

We rely on the next observation.

Claim 12.16. For every ϕ ∈ {Ker(g),Ker(h)} there exists η ∈ ConK(A) such that

ϕ ∈ {(η × A2)↾CgAK (B), (A
2 × η)↾CgAK (B)}.

Proof of the Claim. By symmetry it suffices to show that the statement holds for the case

where ϕ = Ker(g). Since g : CgAK (B)∗ → C is a homomorphism with C ∈ K, we have

Ker(g) ∈ ConK(CgAK (B)∗). Moreover, recall that C ∈ Krfsi and that Krfsi is closed under

nontrivial subalgebras by assumption. Therefore, from CgAK (B)∗/Ker(g) ∈ IS(C) it follows

that CgAK (B)∗/Ker(g) is either trivial or belongs to Krfsi. Lastly, recall that CgAK (B)∗ ⩽ A×A

is a subdirect product with A ∈ K. As K is a relatively congruence distributive quasivariety

by assumption, we can apply Corollary 2.18, obtaining the desired conclusion. ⊠

By symmetry and Claim 12.16 we may assume that there exist η1, η2 ∈ ConK(A) such that

Ker(g) = (η1 × A2)↾CgAK (B) and Ker(h) ∈ {(η2 × A2)↾CgAK (B), (A
2 × η2)↾CgAK (B)}. We have two

cases depending on whether Ker(h) is (η2 × A2)↾CgAK (B) or (A2 × η2)↾CgAK (B).

First, suppose that Ker(h) = (η2 × A2)↾CgAK (B). Then

Ker(g) = (η1 × A2)↾CgAK (B) and Ker(h) = (η2 × A2)↾CgAK (B). (62)

Recall that ⟨a, b⟩ ∈ CgAK (B) and, therefore, a, b ∈ A. Together with η1, η2 ∈ Con(A), this

implies ⟨a, a⟩ ∈ η1 ∩ η2 and ⟨a, b⟩ ∈ A2. Thus, ⟨⟨a, a⟩, ⟨a, b⟩⟩ ∈ (η1 × A2) ∩ (η2 × A2). Since

⟨a, a⟩, ⟨a, b⟩ ∈ CgAK (B), we obtain

⟨⟨a, a⟩, ⟨a, b⟩⟩ ∈ ((η1 × A2) ∩ (η2 × A2))↾CgAK (B) = (η1 × A2)CgAK (B) ∩ (η2 × A2)CgAK (B).

In view of (62), this amounts to ⟨⟨a, a⟩, ⟨a, b⟩⟩ ∈ Ker(g) ∩ Ker(h), that is,

g(⟨a, a⟩) = g(⟨a, b⟩) and h(⟨a, a⟩) = h(⟨a, b⟩),

a contradiction with (60).

It only remains to consider the case where Ker(h) = (A2 × η2)↾CgAK (B). In this case, we have

Ker(g) = (η1 × A2)↾CgAK (B) and Ker(h) = (A2 × η2)↾CgAK (B). (63)

We rely on the following observation.

Claim 12.17. We have CgAK (B) ⊆ η1.
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Proof of the Claim. As η1 ∈ ConK(A), it will be enough to show that B ⊆ η1. To this

end, consider ⟨p, q⟩ ∈ B. By assumption we also have ⟨q, q⟩ ∈ B. Since B ⩽ A × A by

assumption, we have p, q ∈ A. Together with η2 ∈ Con(A), this yields ⟨q, q⟩ ∈ η2 and,

therefore, ⟨⟨p, q⟩, ⟨q, q⟩⟩ ∈ (A2×η2). As ⟨p, q⟩ ∈ B ⊆ CgAK (B) and ⟨q, q⟩ ∈ CgAK (B) (the latter

because CgAK (B) is a congruence of A), we obtain

⟨⟨p, q⟩, ⟨q, q⟩⟩ ∈ (A2 × η2)↾CgAK (B) = Ker(h),

where the last equality holds by the right hand side of (63). The left hand side of (59) implies

Ker(g)↾B = Ker(h)↾B. Together with the above display and ⟨p, q⟩, ⟨q, q⟩ ∈ B, this implies

⟨⟨p, q⟩, ⟨q, q⟩⟩ ∈ Ker(g). Since Ker(g) = (η1 × A2)↾CgAK (B) by the left hand side of (63), we

conclude that ⟨p, q⟩ ∈ η1. ⊠

Now, recall that ⟨a, b⟩ ∈ CgAK (B). By Claim 12.17 we obtain ⟨a, b⟩ ∈ η1. Since b ∈ A, this

implies ⟨⟨a, b⟩, ⟨b, b⟩⟩ ∈ (η1 × A2). On the other hand, from a, b ∈ A and η2 ∈ Con(A) it

follows that ⟨⟨a, b⟩, ⟨b, b⟩⟩ ∈ (A2 × η2). As ⟨a, b⟩, ⟨b, b⟩ ∈ CgAK (B), we obtain

⟨⟨a, b⟩, ⟨b, b⟩⟩ ∈ (η1 × A2)↾CgAK (B) and ⟨⟨a, b⟩, ⟨b, b⟩⟩ ∈ (A2 × η2)↾CgAK (B).

By (63) this amounts to ⟨⟨a, b⟩, ⟨b, b⟩⟩ ∈ Ker(g) ∩ Ker(h), that is,

g(⟨a, b⟩) = g(⟨b, b⟩) and h(⟨a, b⟩) = h(⟨b, b⟩),

a contradiction with (61). ⊠

We will also make use of the next observation from [29, Thm. 6.1].

Theorem 12.18. Let K be a relatively congruence distributive quasivariety for which Krfsi is

closed under nontrivial subalgebras. If K has the weak epimorphism surjectivity property, then

the variety V(K) is arithmetical.

As a last step before proving Theorem 12.10, we establish the following result on the strong

epimorphism surjectivity property.

Theorem 12.19. Let K be a relatively congruence distributive quasivariety for which Krfsi is

closed under nontrivial subalgebras. If K has the strong epimorphism surjectivity property,

then K is an arithmetical variety with the congruence extension property.

Proof. Suppose that K has the strong epimorphism surjectivity property.

We begin by showing that K is a variety. As K is a quasivariety, by Proposition 2.5 it

suffices to show that Con(A) = ConK(A) for every A ∈ K. To this end, consider A ∈ K and

θ ∈ Con(A). We will show that θ = CgAK (θ) which, in turns, implies θ ∈ ConK(A), as desired.

In view of Proposition 2.8, the congruence θ is the universe of a subalgebra B ⩽ A ×A.

Furthermore, for every ⟨a, b⟩ ∈ B = θ we have ⟨a, a⟩, ⟨b, b⟩ ∈ θ = B because θ is a congruence

of A. Therefore, we can apply Proposition 12.15, obtaining

θ = B = CgAK (B) ∩ (p1[B] × p2[B]) = CgAK (θ) ∩ (p1[θ] × p2[θ]).

Since θ is a reflexive relation on A, we have p1[θ] × p2[θ] = A × A. Therefore, the above

display yields θ = CgAK (θ) ∩ (A × A) = CgAK (θ). It follows that θ ∈ ConK(A). Hence, we

conclude that K is a variety.
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Next we prove that the variety K has the congruence extension property. It will be enough

to show that θ = CgA(θ)↾C for all C ⩽ A ∈ K and θ ∈ Con(C). Accordingly, consider

C ⩽ A ∈ K and θ ∈ Con(C). In view of Proposition 2.8, the congruence θ is the universe of a

subalgebra B ⩽ C ×C. Furthermore, for every ⟨a, b⟩ ∈ B = θ we have ⟨a, a⟩, ⟨b, b⟩ ∈ θ = B

because θ is a congruence of C. As C ⩽ A, we have C ×C ⩽ A×A, whence B ⩽ A×A.

Therefore, we can apply Proposition 12.15, obtaining

θ = B = CgAK (B) ∩ (p1[B] × p2[B]) = CgAK (θ) ∩ (p1[θ] × p2[θ]).

Since θ is a reflexive relation on C, we have p1[θ]×p2[θ] = C×C. Therefore, the above display

yields θ = CgAK (θ) ∩ (C × C) = CgA(θ)↾C . Thus, we conclude that K has the congruence

extension property.

It only remains to prove that the variety K is arithmetical. As K has the strong epimorphism

surjectivity property by assumption, it has the weak epimorphism surjectivity property as

well. Moreover, K = V(K) because K is a variety. Therefore, from Theorem 12.18 it follows

that K is arithmetical. ⊠

We are now ready to prove Theorem 12.10.

Proof. Let M be a congruence preserving Beth companion of K. Since M is a pp expansion

of K and K is a quasivariety by assumption, we obtain that M is also a quasivariety (see

Theorem 10.3(ii)). In addition, as M is a Beth companion of K and K is a quasivariety, M has

the strong epimorphism surjectivity property by Theorem 11.6. From the assumption that K is

relatively congruence distributive and Theorem 12.8 it follows that M is relatively congruence

distributive as well. Lastly, we will prove that Mrfsi is closed under nontrivial subalgebras.

Consider A ⩽ B ∈ Mrfsi with A nontrivial. By Theorem 12.9 we have B↾LK
∈ Krfsi.

Furthermore, A ⩽ B implies A↾LK
⩽ B↾LK

. As A is nontrivial, so is A↾LK
. Therefore,

A↾LK
⩽ B↾LK

∈ Krfsi and the assumption that Krfsi is closed under nontrivial subalgebras

guarantee that A↾LK
∈ Krfsi. Together with A ∈ M, this allows us to apply Theorem 12.9,

obtaining A ∈ Mrfsi. Hence, we conclude that Mrfsi is closed under nontrivial subalgebras.

Therefore, M is a quasivariety with the strong epimorphism surjectivity property that,

moreover, is relatively congruence distributive and such that Mrfsi is closed under nontrivial

subalgebras. Thus, from Theorem 12.19 it follows that M is an arithmetical variety with

the congruence extension property. Since M is a variety, we obtain Mfsi = Mrfsi. As Mrfsi is

closed under nontrivial subalgebras, we conclude that so is Mfsi. ⊠

Our last goal is to prove Corollary 12.11. To this end, we rely on the following consequence

of Theorem 12.19 which, in the context of varieties, originates in [10, Cor. 3(i)] (see also [29,

Example 6.5]).

Corollary 12.20. Every relatively filtral quasivariety with the strong epimorphism surjectivity

property is a discriminator variety.

Proof. Let K be a relatively filtral quasivariety with the strong epimorphism surjectivity

property. As K is relatively filtral, it is relatively congruence distributive and Krfsi is closed

under nontrivial subalgebras (see, e.g., [24, Cor. 6.5(i, iv)]). Therefore, from Theorem 12.19
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it follows that K is an arithmetical variety. Since K is a relatively filtral quasivariety, this

yields that K is a congruence permutable filtral variety. As congruence permutable filtral

varieties coincide with discriminator varieties (see, e.g., [18, 52]), we conclude that K is a

discriminator variety. ⊠

Furthermore, we recall that a join semilattice ⟨A;∨⟩ is said to be dually Brouwerian when

for all a, b ∈ A there exists the smallest c ∈ A such that a ⩽ b ∨ c. Moreover, an element a

of a complete lattice A is compact when for every X ⊆ A such that a ⩽
∨
X there exists a

finite Y ⊆ X such that a ⩽
∨
Y . With every quasivariety K and algebra A we associate a

join semilattice CompK(A) whose universe is the set of compact elements of ConK(A) and

whose join operation + is defined by the rule θ + ϕ = CgAK (θ ∪ ϕ). Lastly, a member A of

a quasivariety K is said to be simple relative to K when ConK(A) has exactly two elements,

and we say that K is relatively semisimple when every member of Krsi is simple relative to

K. When K is a variety, we simply say that A is simple and K semisimple. We will rely on

the fact that a quasivariety K is relatively filtral if and only if it is relatively semisimple and

CompK(A) is dually Brouwerian for every A ∈ K (see [24, Thm. 6.3] and [78, Thms. 5 &

8]).9 Bearing this in mind, we will now prove Corollary 12.11.

Proof. Let M be a Beth companion of a relatively filtral quasivariety K. Since every relatively

filtral quasivariety has the relative congruence extension property (see, e.g., [24, Cor. 6.5(i)]),

so does K. As M is a pp expansion of K, we conclude that M is congruence preserving by

Theorem 12.4(ii).

We will show that M is also a relatively filtral quasivariety. The fact that M is a quasivariety

is a consequence of Theorem 10.3(ii) and the assumption that M is a pp expansion of the

quasivariety K. Therefore, it only remains to prove that M is relatively filtral, i.e., that it is

relatively semisimple and CompM(A) is dually Brouwerian for every A ∈ M. To show that M

is relatively semisimple, consider A ∈ Mrsi. Since M is a congruence preserving pp expansion

of K, we can apply Theorem 12.9, obtaining A↾LK
∈ Krsi. As the quasivariety K is relatively

semisimple (because it is relatively filtral by assumption), we obtain that ConK(A↾LK
) has

exactly two elements. Moreover, ConM(A) = ConK(A↾LK
) because A ∈ M and M is a

congruence preserving pp expansion of K. Therefore, ConM(A) has exactly two elements,

whence A is simple relative to M. Hence, we conclude that M is relatively semisimple, as

desired. Next we prove that CompM(A) is dually Brouwerian for every A ∈ M. Consider

A ∈ M and observe that A↾LK
∈ K by Proposition 10.2. Since M is congruence preserving,

we have ConM(A) = ConK(A↾LK
), whence CompM(A) = CompK(A↾LK

). As CompK(A↾LK
)

is dually Brouwerian (because K is relatively filtral and A↾LK
∈ K), we conclude that so is

CompM(A). Thus, we conclude that M is a relatively filtral quasivariety.

Lastly, observe that M has the strong epimorphism surjectivity property because it is a

Beth companion of the quasivariety K (see Theorem 11.6). Thus, M is a relatively filtral

quasivariety with the strong epimorphism surjectivity property. By Corollary 12.20 we

conclude that M is a discriminator variety. ⊠

9This description of filtrality originated in the context of varieties (see [51, 52]) and was later extended to

quasivarieties in [24].
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13. Absolutely closed and primal algebras

The aim of this section is to provide additional criteria to establish whether a pp expansion

of a quasivariety is a Beth companion. The two main results are Theorems 13.3 and 13.25

involving absolutely closed algebras and primal algebras, respectively. We will employ these

results to determine the Beth companions of torsion-free Abelian groups (Example 13.6),

Abelian ℓ-groups (Example 13.13), MV-algebras (Example 13.17), and varieties of MV-algebras

generated by a finite chain (Example 13.26).

We begin by recalling the definition of an absolutely closed algebra (see [71, p. 236]).

Definition 13.1. Let K be a class of algebras. A member A of K is called absolutely closed

in K when dK(A,B) = A for every B ∈ K such that A ⩽ B. The class of absolutely closed

members of K will be denoted by Kac.

On the one hand, absolutely closed algebras are related to the reducts of the members of

Beth companions, as the following result states.

Theorem 13.2. Let K be a quasivariety with a Beth companion M = S(K[LF ]). Then

K[LF ]↾LK
⊆ Kac ⊆ M↾LK

.

Moreover, if M is an equational Beth companion of K, then M↾LK
= Kac.

On the other hand, the next result shows that absolutely closed algebras provide a sufficient

condition for a pp expansion of a quasivariety to be a Beth companion.

Theorem 13.3. Let M be a pp expansion of a quasivariety K such that M↾LK
⊆ Kac. Then

M is a Beth companion of K.

We postpone the proofs of Theorems 13.2 and 13.3 and proceed to describe some of their

applications. To this end, it is convenient to introduce injective algebras and absolute retracts

(see, e.g., [76, pp. 80–81]) and relate them to absolutely closed algebras.

Definition 13.4. A member A of a quasivariety K is said to be:

(i) injective in K when for all B,C ∈ K such that B ⩽ C and homomorphism f : B → A

there exists a homomorphism g : C → A such that g↾B = f ;

B C

A

f
g

(ii) an absolute retract in K when for every B ∈ K such that A ⩽ B there exists a

homomorphism g : B → A such that g↾A is the identity map on A.

A B

A

id
g

Proposition 13.5. The following conditions hold for a class of algebras K and A ∈ K:
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(i) if A is injective in K, then it is an absolute retract in K;

(ii) if A is an absolute retract in K, then it is absolutely closed in K.

Proof. (i): See, e.g., [76, Prop. 1.1].

(ii): Suppose that A is an absolute retract in K and consider B ∈ K such that A ⩽ B.

Since A is an absolute retract in K, there exists a homomorphism g : B → A such that

g↾A is the identity on A. Let h = i ◦ g, where i is the inclusion map of A into B. Then

h : B → B is a homomorphism such that h(a) = g(a) = a for every a ∈ A. Consider the

identity map id : B → B. As h(a) = a = id(a) for every a ∈ A, we have h↾A = id↾A.

Then h(b) = id(b) = b for every b ∈ dK(A,B). Since the image of h is A, it follows that

dK(A,B) = A. Therefore, A is absolutely closed in K. ⊠

We are now ready to illustrate how Theorem 13.3 can be applied to describe the Beth

companions of concrete classes of algebras.

Example 13.6 (Torsion-free Abelian groups). An Abelian group10 A = ⟨A; +,−, 0⟩ is said

to be torsion-free when 0 is its only element of finite order. Torsion-free Abelian groups

form a quasivariety TFAG axiomatized relative to Abelian groups by the quasiequations

nx ≈ 0 → x ≈ 0 for every n ∈ Z+. Our aim is to describe the Beth companion of TFAG.

To this end, let A ∈ TFAG, a ∈ A, and n ∈ Z+. We say that an element b ∈ A is the result

of dividing a by n if nb = a. An Abelian group A is called divisible when for all a ∈ A and

n ∈ Z+ there exists some b ∈ A such that nb = a. In view of the next result, “dividing by n”

is an extendable implicit operation of TFAG.

Proposition 13.7. For each n ∈ Z+ there exists a unary fn ∈ exteq(TFAG) such that for all

A ∈ TFAG and a ∈ dom(fA
n ),

dom(fA
n ) = {c ∈ A : nb = c for some b ∈ A};

fA
n (a) = the result of dividing a by n.

Proof. Let φn(x, y) = x ≈ ny. Moreover, let Z and Q be the additive groups of the integers

and the rationals, respectively. The fundamental theorem of finitely generated Abelian groups

(see, e.g., [45, Thm. 5.2.3]) implies that every finitely generated torsion-free Abelian group

is isomorphic to Zm for some m ∈ N. Proposition 2.16 implies that TFAG is generated

as a quasivariety by its finitely generated members. Since Z ⩽ Q, we obtain that TFAG

is also generated as a quasivariety by Q. Observe that for all a
b
, c
d
∈ Q and n ∈ Z+ we

have that Q ⊨ φn(a
b
, c
d
) implies c

d
= a

nb
. Therefore, each φn is functional in Q. As TFAG

is the quasivariety generated by Q, Corollary 3.11 yields that φn defines a member fn of

impeq(TFAG). From the definition of φn it follows that the two displays in the statement hold.

Moreover, fQ
n is total because every rational can be divided by n in Q. As TFAG is generated

as a quasivariety by Q, Proposition 8.11(ii) guarantees that fn is extendable. ⊠

Corollary 13.8. TFAG lacks the strong epimorphism surjectivity property.

10In this and the next example, we temporarily switch to the additive notation for Abelian groups, as it

will be more convenient.



98 LUCA CARAI, MIRIAM KURTZHALS, AND TOMMASO MORASCHINI

Proof. Let f2 be the member of exteq(TFAG) given by Proposition 13.7. Since Z ⩽ Q ∈ TFAG

and fQ
2 (1) = 1

2
/∈ Z, from Theorem 4.10 it follows that 1

2
∈ dTFAG(Z,Q)−Z. Therefore, TFAG

lacks the strong epimorphism surjectivity property by Proposition 6.6. ⊠

Let F = {fn : n ∈ Z+} be the set of implicit operations given by Proposition 13.7. By the

same proposition we have F ⊆ exteq(TFAG). Denote by L the language of groups and let

LF = L ∪ {dn : n ∈ Z+} be an F-expansion of L in which the role of gfn is played by dn.

Then DAG = S(TFAG[LF ]) is an equational pp expansion of TFAG. We will prove that it is

an equational Beth companion of TFAG. To this end, we rely on the following observation.

Proposition 13.9. DAG↾L is the class of divisible torsion-free Abelian groups. Moreover,

every member of DAG↾L is injective in TFAG.

Proof. Let A ∈ TFAG. As F ⊆ exteq(TFAG), from Theorem 10.4 it follows that DAG =

TFAG[LF ]. Then A ∈ DAG↾L if and only if fA
n is total for every n ∈ Z+. Therefore,

A ∈ DAG↾L if and only if A is divisible. Since DAG↾L ⊆ TFAG, we conclude that the

members of DAG↾L are exactly the divisible torsion-free Abelian groups. It only remains to

prove that every member of DAG↾L is injective in TFAG. It is well known that the injective

members of the variety AG of Abelian groups are exactly the divisible Abelian groups (see,

e.g., [106, Cor. 2.3.2]). Since TFAG ⊆ AG, from the definition of an injective algebra it follows

that every divisible member of AG that is torsion-free is also injective in TFAG. As all the

members of DAG↾L are divisible, we conclude they are injective in TFAG. ⊠

We are now ready to establish the desired description of the Beth companion of TFAG.

Theorem 13.10. DAG is a variety and an equational Beth companion of TFAG.

Proof. Let Σ be a set of equations axiomatizing the variety of Abelian groups. Since φn =

x ≈ ny is the equation defining fn (see the proof of Proposition 13.7), from Theorem 10.4 it

follows that DAG is axiomatized by the set of quasiequations

Γ = Σ ∪ {nx ≈ 0 → x ≈ 0 : n ∈ Z+} ∪ {x ≈ ndn(x) : n ∈ Z+}.

We will show that DAG is also axiomatized by the set of equations

Γ′ = Σ ∪ {x ≈ dn(nx) : n ∈ Z+} ∪ {x ≈ ndn(x) : n ∈ Z+}.

It will be enough to prove that Γ and Γ′ have the same models. First, let A be a model

of Γ. Then A↾L is a torsion-free Abelian group. Consider a ∈ A and n ∈ Z+. Since

A ⊨ x ≈ ndn(x), we have na = ndAn (na). Then 0 = n(dAn (na)− a), which implies a = dAn (na)

because A↾L is torsion-free. So, A ⊨ Γ′. Conversely, suppose that A is a model of Γ′. Let

a ∈ A and n ∈ Z+. If na = 0, then

a = dAn (na) = dAn (0) = dAn (n0) = 0,

where the first and last equalities hold because A ⊨ x ≈ dn(nx), the second because na = 0

by assumption, and the third because 0 = n0. Therefore, A ⊨ nx ≈ 0 → x ≈ 0. Hence, A is

a model of Γ. We conclude that the set of equations Γ′ axiomatizes DAG, which is then a

variety.
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Lastly, by Proposition 13.9 every member of DAG↾L is injective in TFAG. Then Proposi-

tion 13.5 implies DAG↾L ⊆ TFAGac. Since DAG is a pp expansion of TFAG, from Theorem 13.3

it follows that DAG is a Beth companion of TFAG which, moreover, is equational because

DAG is an equational pp expansion of TFAG. ⊠

For the next pair of examples, it is convenient to introduce the following class of algebras

(see [71, p. 236]).

Definition 13.11. A member A of a class of algebras K is called saturated in K when there

exists no B ∈ K such that A is a proper K-epic subalgebra of B.

In quasivarieties, saturated algebras are also called epicomplete (see, e.g., [8, p. 176]).

Saturated and absolutely closed algebras are related as follows.

Proposition 13.12. The following conditions hold for a class of algebras K:

(i) every algebra that is absolutely closed in K is saturated in K;

(ii) if K is a quasivariety with the amalgamation property, then every algebra that is saturated

in K is absolutely closed in K.

Proof. (i): Suppose that A is absolutely closed in K. Consider B ∈ K such that A is a proper

subalgebra of B. Assume, with a view to contradiction, that A is a K-epic subalgebra of B.

Then f = g for every C ∈ K and pair of homomorphisms f, g : B → C such that f↾A = g↾A.

Therefore, dK(A,B) = B. Since A is absolutely closed in K, we have that dK(A,B) = A.

We conclude that A = B, which contradicts the assumption that A is a proper subalgebra

of B.

(ii): Assume that K has the amalgamation property and that A is saturated in K. Let

B ∈ K be such that A ⩽ B. To prove that A is absolutely closed in K, we need to show that

dK(A,B) = A. Consider the subalgebra D of B with universe dK(A,B). Then A ⩽ D ⩽ B.

Since K has the amalgamation property and is a quasivariety by assumption, Proposition 4.11

implies dK(A,D) = dK(A,B)∩D. As dK(A,B) = D, we obtain dK(A,D) = D. Furthermore,

D ∈ K because D ⩽ B ∈ K and K is a quasivariety. It follows that A is a K-epic subalgebra

of D. Then the assumption that A is saturated in K and D ∈ K let us conclude that A = D.

Therefore, dK(A,B) = A, as desired. ⊠

Example 13.13 (ℓ-groups). An Abelian ℓ-group is an algebra ⟨A; +,−,∧,∨, 0⟩ such that

⟨A; +,−, 0⟩ is an Abelian group, ⟨A;∧,∨⟩ is a lattice, and

a ⩽ b implies a+ c ⩽ b+ c

for all a, b, c ∈ A, where ⩽ denotes the partial order on A induced by its lattice structure

(see, e.g., [80]). The class ℓAG of Abelian ℓ-groups forms a variety (see, e.g., [16, Cor. 1 of

Thm. XIII.2]). Our aim is to describe the Beth companion of ℓAG.

To this end, given A ∈ ℓAG, a, b ∈ A, and n ∈ Z+, we say that b is the result of dividing a

by n if nb = a. We say that an Abelian ℓ-group is divisible when so is its group reduct.
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Proposition 13.14. For each n ∈ Z+ there exists a unary fn ∈ exteq(ℓAG) such that for all

A ∈ ℓAG and a ∈ dom(fA
n ),

dom(fA
n ) = {c ∈ A : nb = c for some b ∈ A};

fA
n (a) = the result of dividing a by n.

Proof. Let φn(x, y) = x ≈ ny. The proof of Proposition 13.7 shows that φn defines a unary

implicit operation of TFAG. As the class of group reducts of ℓAG is TFAG (see [16, Cor. of

Thm. XIII.11]), the equation φn defines also a unary fn ∈ impeq(ℓAG). Clearly, the two

displays in the statement hold for fn. Therefore, it only remains to show that fn is extendable.

Recall from [15, Lem. 1, p. 317] that the members of ℓAGrfsi are nontrivial and linearly

ordered. Moreover, the class of nontrivial linearly ordered members of ℓAGrfsi is U(Q), where

Q denotes the additive group of the rationals equipped with the lattice structure induced by

the standard order of Q by [60]. Therefore, the Subdirect Decomposition Theorem 2.9 yields

that ℓAG is generated as a quasivariety by Q. Arguing as in the proof of Proposition 13.7,

we conclude that each fn is extendable. ⊠

The next observation can be traced back at least to [97].

Corollary 13.15. ℓAG lacks the strong epimorphism surjectivity property.

Proof. Analogous to the proof of Corollary 13.8 with the sole difference that Q is the algebra

employed in the proof of Proposition 13.14 and Z the subalgebra of Q whose universe is the

set of integers. ⊠

Set F = {fn : n ∈ Z+} be the set of implicit operations given by Proposition 13.14. By

the same proposition we have F ⊆ extpp(TFAG). Let LF be an F -expansion of LℓAG. Then

ℓDAG = S(ℓAG[LF ]) is an equational pp expansion of ℓAG.

Theorem 13.16. ℓDAG is a variety and an equational Beth companion of ℓAG.

Proof. Since F ⊆ exteq(ℓAG) and ℓAG is a variety, Theorem 10.3(iii) implies that ℓDAG is also a

variety. Moreover, from Theorem 10.4 it follows that ℓDAG = ℓAG[LF ]. Therefore, ℓDAG↾LℓAG

is the class of divisible Abelian ℓ-groups. Then [2, Thm. 2.1] yields that ℓDAG↾LℓAG
is the

class of members of ℓAG that are saturated in ℓAG. Since ℓAb has the amalgamation property

(see [98, Thm. 2.3]), we can apply Proposition 13.12(ii), obtaining ℓDAG↾LℓAG
⊆ ℓAGac. Thus,

Theorem 13.3 implies that ℓDAG is a Beth companion of ℓAG which, moreover, is equational

because ℓDAG is an equational pp expansion of ℓAG. ⊠

Example 13.17 (MV-algebras). An MV-algebra is an algebra A = ⟨A;⊕,¬, 0⟩ comprising a

commutative monoid ⟨A;⊕, 0⟩ and satisfying the equations

¬¬x ≈ x, x⊕ ¬0 ≈ ¬0, ¬(¬x⊕ y) ⊕ y ≈ ¬(¬y ⊕ x) ⊕ x.

From a logical standpoint, the interest of MV-algebras derives from the fact that they

algebraize the infinite-valued  Lukasiewicz logic (see, e.g., [36]).

The variety MV of MV-algebras is generated by the algebra [0, 1] = ⟨[0, 1],⊕,¬, 0⟩ with

universe the real unit interval [0, 1] = {a ∈ R : 0 ⩽ a ⩽ 1} and equipped with the operations

a⊕ b = min{a+ b, 1} and ¬a = 1 − a
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for all a, b ∈ [0, 1], where + and − denote the standard addition and subtraction in R (see,

e.g., [36, Prop. 8.1.1]). Our aim is to describe the Beth companion of MV.

To this end, we will employ the following abbreviations

1 = ¬0 and x⊙ y = ¬(¬x⊕ ¬y),

and for every n ∈ N we recursively define n.x by setting

0.x = 0 and (n+ 1).x = (n.x) ⊕ x.

Let A ∈ MV and a ∈ A. For every n ∈ Z+ we say that b ∈ A is the result of dividing a by

n when n.b = a and b ⊙ ((n − 1).b) = 0. An MV-algebra A is called divisible when for all

a ∈ A and n ∈ Z+ there exists b ∈ A obtained as the result of dividing a by n.

Proposition 13.18. For each n ∈ Z+ there exists a unary fn ∈ exteq(MV) such that for all

A ∈ MV and a ∈ dom(fA
n ),

dom(fA
n ) = {c ∈ A : b is the result of diving c by n for some b ∈ A};

fA
n (a) = the result of dividing a by n.

Proof. Consider the conjunction of equations

φn(x, y) = (n.y ≈ x) ⊓ (y ⊙ ((n− 1).y) ≈ 0).

We will rely on the following observation.

Claim 13.19. For all a, b ∈ [0, 1] the following conditions hold in [0, 1]:

(i) n.b = a if and only if either
(
a < 1 and b = a

n

)
or
(
a = 1 and b ⩾ 1

n

)
;

(ii) b⊙ ((n− 1).b) = 0 if and only if b ⩽ 1
n
;

(iii) [0, 1] ⊨ φn(a, b) if and only if b = a
n
.

Proof of the Claim. The definitions of ⊕ and ¬ on [0, 1] yield n.c = min{nc, 1} and c⊙ d =

max{c+ d− 1, 0} for all c, d ∈ I and n ∈ N.

(i): Suppose that n.b = a. Then min{nb, 1} = a. If a < 1, then nb = a. If a = 1, then

min{nb, 1} = 1. So, nb ⩾ 1, which yields b ⩾ 1
n
. To prove the reverse implication, we

have to consider two cases. First, assume that a < 1 and b = a
n
. Then n.b = min{nb, 1} =

min{a, 1} = a. Next we consider the case where a = 1 and b ⩾ 1
n
. We have nb ⩾ 1, and

hence n.b = min{nb, 1} = 1 = a.

(ii): We have that b⊙ ((n− 1).b) = 0 if and only if max{b+ ((n− 1).b) − 1, 0} = 0, which

is equivalent to b+ ((n− 1).b− 1) ⩽ 0. Moreover,

b+ ((n− 1).b) − 1 = b+ min{(n− 1)b, 1} − 1 = min{nb− 1, b}.

Therefore, b⊙ ((n− 1).b) = 0 if and only if min{nb− 1, b} ⩽ 0. As b ⩾ 0, the latter condition

is equivalent to nb− 1 ⩽ 0, and hence to b ⩽ 1
n
.

(iii): Together with (i) and (ii), the definition of φn yields that [0, 1] ⊨ φn(a, b) if and only

if either
(
a < 1 and b = a

n
and b ⩽ 1

n

)
or
(
a = 1 and b = 1

n

)
. Since a ∈ [0, 1], we have a

n
⩽ 1

n
.

Therefore, if b = a
n
, we have b ⩽ 1

n
. We conclude that [0, 1] ⊨ φn(a, b) if and only if b = a

n
. ⊠
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From Claim 13.19(iii) it follows that φn is functional and total in [0, 1]. Since MV = Q([0, 1])

(see, e.g., [56, p. 84]), Corollary 3.11 and Proposition 8.11(ii) imply that φn defines a unary

fn ∈ exteq(MV). Lastly, as φn defines fn, the two displays in the statement hold. ⊠

As a consequence, we obtain the following observation from [17, 103].

Corollary 13.20. MV lacks the strong epimorphism surjectivity property.

Proof. Let f2 be the member of exteq(MV) given by Proposition 13.18. Moreover, let A be

the subalgebra of [0, 1] with universe {0, 1}. Since A ⩽ [0, 1] ∈ MV and f
[0,1]
2 (1) = 1

2
/∈ A,

from Theorem 4.10 it follows that 1
2
∈ dMV(A, [0, 1]) − A. Therefore, MV lacks the strong

epimorphism surjectivity property by Proposition 6.6. ⊠

A DMV-algebra (see [54] and [53, Def. 5.1.1]) is an algebra A = ⟨A;⊕,¬, {dn}n∈Z+ , 0⟩
comprising an MV-algebra ⟨A;⊕,¬, 0⟩ and a sequence of unary operations {dn}n∈Z+ satisfying

the equations

n.dn(x) ≈ x and dn(x) ⊙ ((n− 1).dn(x)) ≈ 0.

Let DMV be the variety of DMV-algebras.

Theorem 13.21. DMV is an equational Beth companion of MV.

Proof. Let F = {fn : n ∈ Z+} ⊆ exteq(MV) be the family of operations given by Propo-

sition 13.18. Moreover, let dn be a unary function symbol for each n ∈ Z+. Then the

language LF = LMV ∪ {dn : n ∈ Z+} is an F-expansion of LMV in which the role of gfn is

played by dn. From Theorem 10.4 and the fact that each fn is defined by the conjunction of

equations φn in the proof of Proposition 13.18 it follows that S(MV[LF ]) = MV[LF ] is an

equational pp expansion of MV axiomatized by the axioms of MV-algebras plus the equations

n.dn(x) ≈ x and dn(x) ⊙ ((n− 1).dn(x)) ≈ 0 for n ∈ Z+. Clearly, every member of MV[LF ]

is a DMV-algebra. On the other hand, every DMV-algebra can be obtained by adding the

implicit operations fn to its MV-algebra reduct, which belongs to MV[LF ]↾LMV
. Therefore,

MV[LF ] coincides with the variety DMV of DMV-algebras.

In view of Theorem 13.3, to show that DMV is a Beth companion of MV, it suffices to

prove that DMV↾MV ⊆ MVac. The definition of DMV yields that the members of DMV↾MV are

divisible MV-algebras. Every divisible MV-algebra is saturated in MV (see [47, Thm. 3.18(ii)])

and MV has the amalgamation property (see [95, p. 91]). Therefore, from Proposition 13.12(ii)

it follows that DMV↾MV ⊆ MVac. Then Theorem 13.3 yields that DMV is a Beth companion

of MV which, moreover, is equational because DMV is an equational pp expansion of MV. ⊠

The next concept originates in [49, 50].

Definition 13.22. A finite algebra A is said to be primal when for every function f : An → A

of positive arity there exists a term t(x1, . . . , xn) of LA such that for all a1, . . . , an ∈ A,

f(a1, . . . , an) = tA(a1, . . . , an).

Examples of primal algebras include the two-element Boolean algebra and the rings of the

form Zp with p prime (see, e.g., [49]). Primal algebras admit the following elegant characteri-

zation (see, e.g., [21, Cor. IV.10.8]), where rigid means “lacking nonidentity automorphisms”.
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Theorem 13.23. A finite algebra A is primal if and only if V(A) is arithmetical and A is

simple, rigid, and lacks proper subalgebras.

The structure theory of varieties generated by a primal algebra is very rich, as a consequence

of the fact that these are precisely the varieties categorically equivalent to the variety of

Boolean algebras [70] (see also [41]). In particular, since the variety of Boolean algebras has

the surjective epimorphism property (see Theorem 7.5) and this property is preserved by

categorical equivalences between varieties by Remark 6.4, we deduce the following.

Proposition 13.24. Varieties generated by a primal algebra have the strong epimorphism

surjectivity property.

In the next example, we will employ the following observation.

Theorem 13.25. Let A be an L-algebra, F ⊆ imppp(A), and LF an F-expansion of L such

that A[LF ] is defined. If A[LF ] is primal, then V(A[LF ]) is a Beth companion of Q(A). If,

moreover, F ⊆ impeq(A), then the Beth companion V(A[LF ]) is equational.

Proof. Suppose that A[LF ] is primal. Then V(A[LF ]) has the strong epimorphism sur-

jectivity property by Proposition 13.24. Furthermore, recall from [21, Thm. IV.9.4] that

Q(A[LF ]) = V(A[LF ]) because A[LF ] is primal. Together with Theorem 11.6, this yields

that, to conclude that V(A[LF ]) is a Beth companion of Q(A), it only remains to show that

Q(A[LF ]) is a pp expansion of Q(A).

Since F ⊆ imppp(A), for every f ∈ F there exists a pp formula φf functional in A that

defines f . By Corollary 3.11 each φf defines some f ∗ ∈ imppp(Q(A)). Let F∗ = {f ∗ : f ∈ F}.

As A[LF ] is defined, fA is total for every f ∈ F . Consequently, fA = (f ∗)A because f and f ∗

are both defined by φf . Therefore, (f ∗)A is total for every f ∗ ∈ F∗. Then Proposition 8.11(ii)

yields F∗ ⊆ extpp(Q(A)). We can regard LF as an F∗-expansion of L by setting gf∗ = gf
for each f ∈ F . Since fA = (f ∗)A for every f ∈ F , the definition of A[LF ] is independent

on whether LF is thought of as an F -expansion or as an F∗-expansion. Thus, Theorem 10.5

implies that Q(A[LF ]) is a pp expansion of Q(A) induced by F∗ and LF .

The last part of the statement follows immediately from the construction described

above. ⊠

Example 13.26 (Varieties of MV-algebras generated by a finite chain). For n ∈ Z+, we

denote by  Ln the subalgebra of the real unit interval [0, 1] (cf. Example 13.17) with universe

{m
n

: m ∈ N, m ⩽ n}. Notice that  Ln is a finite MV-algebra of n+ 1 elements. We consider

the variety

MVn = V( Ln) = Q( Ln),

where the second equality in the above display holds by [57, Lem. 1.6]. One of the reasons

the varieties MVn are of interest is that they are precisely the proper nontrivial subvarieties

of MV with the amalgamation property (see [43, Thm. 13]) or, equivalently, the subvarieties

of MV generated by a finite subdirectly irreducible algebra (see, e.g., [34, Lem. 3] and [36,

Prop. 3.6.5]).
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For each n ∈ Z+ consider the conjunction of equations

ψn(x, y) = (n.y ≈ 1) ⊓ (y ⊙ ((n− 1).y) ≈ 0).

As  Ln ⩽ [0, 1], Claim 13.19(i, ii) implies that for all a, b ∈  Ln,

 Ln ⊨ ψn(a, b) ⇐⇒ b =
1

n
.

Therefore, ψn defines a total unary cn ∈ impeq( Ln) such that c Ln
n is the constant map with

value 1
n
. Let Ln be a cn-expansion of LMVn . Since c Ln

n is total, the algebra  Ln[Ln] is defined

and can thought of as the result of adding a constant for the element 1
n

to  Ln. Then let

DMVn = V( Ln[Ln]).

Theorem 13.27. DMVn is a an equational Beth companion of MVn.

Proof. Recall that MVn = Q( Ln). Furthermore, cn ∈ impeq( Ln) and  Ln[Ln] is defined.

Therefore, in view of Theorem 13.25, it suffices to show that  Ln[Ln] is a primal algebra. To

this end, we will employ Theorem 13.23.

First, observe that  Ln[Ln] is finite because so is  Ln. Moreover, recall from [36, Cor. 3.5.4]

that  Ln is simple. As  Ln[Ln] is obtained by adding a constant operation to  Ln, we have

Con( Ln) = Con( Ln[Ln]). Hence,  Ln[Ln] is simple too. Similarly, since  Ln[Ln] is obtained

by adding to  Ln a constant operation with value 1
n

and in  Ln we have m
n

= m. 1
n

for every

0 ⩽ m ⩽ n, the algebra  Ln[Ln] is rigid and lacks proper subalgebras. Lastly, recall that

MVn = V( Ln) is arithmetical (see, e.g., [55, Prop. 7.6]). Therefore, V(A) is arithmetical for

every expansion A of  Ln by [21, Thm. II.12.5]. In particular, V( Ln[Ln]) is arithmetical, as

desired. ⊠

We now turn our attention to proving Theorems 13.2 and 13.3. We begin by establishing

the following pair of results.

Proposition 13.28. Let M = S(K[LF ]) be a pp expansion of a universal class K. Then the

following conditions hold:

(i) dK(A↾LK
,B↾LK

) = dM(A,B) for all A ⩽ B ∈ K[LF ];

(ii) M is a Beth companion of K if and only if dK(A↾LK
,B↾LK

) = A for all A ⩽ B ∈ M.

Proof. (i): Let A ⩽ B ∈ K[LF ]. To establish the inclusion from left to right, consider

b ∈ B − dM(A,B). Then there exists C ∈ M and a pair of homomorphisms g, h : B → C

such that g↾A = h↾A and g(b) ̸= h(b). From Proposition 10.2 it follows that C↾LK
∈ K.

Together with the fact that g, h : B↾LK
→ C↾LK

are homomorphisms such that g↾A = h↾A
and g(b) ̸= h(b), this yields b ∈ B − dK(A↾LK

,B↾LK
). Hence, dK(A↾LK

,B↾LK
) ⊆ dM(A,B).

To prove the reverse inclusion, consider b ∈ B − dK(A↾LK
,B↾LK

). Then there exist C ∈ K

and a pair of homomorphisms g, h : B↾LK
→ C such that g↾A = h↾A and g(b) ̸= h(b). Since

M = S(K[LF ]) is a pp expansion of the universal class K by assumption, Proposition 9.6

guarantees that K is the class of LK-subreducts of K[LF ]. So, there exists D ∈ K[LF ]

such that C ⩽ D↾LK
. As B,D ∈ K[LF ], the homomorphisms g, h : B↾LK

→ D↾LK
can

by viewed as homomorphisms g, h : B → D by Proposition 9.5. Therefore, from D ∈ M,
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g↾A = h↾A, and g(b) ̸= h(b) it follows that b ∈ B − dM(A,B). Hence, conclude that

dM(A,B) ⊆ dK(A↾LK
,B↾LK

).

(ii): Assume that M is a Beth companion of K and consider A ⩽ B ∈ M. We will show

that dK(A↾LK
,B↾LK

) = A. Since M = S(K[LF ]), there exists C ∈ K[LF ] such that B ⩽ C.

As C ∈ K[LF ], from (i) it follows that dK(A↾LK
,C↾LK

) = A. Moreover, Corollary 4.6(i)

yields dK(A↾LK
,B↾LK

) ⊆ dK(A↾LK
,C↾LK

). Therefore, dK(A↾LK
,B↾LK

) = A.

To prove the converse implication assume that dK(A↾LK
,B↾LK

) = A for all A ⩽ B ∈ M.

By Proposition 6.6 and Theorem 11.6, to show that M is a Beth companion of K, it suffices to

establish that dM(C,D) = C for all C ⩽ D ∈ M. Consider C ⩽ D ∈ M. As M = S(K[LF ]),

there exists E ∈ K[LF ] such that D ⩽ E. Then

dM(C,D) ⊆ dM(C,E) = dK(C↾LK
,E↾LK

),

where the first equality holds by Corollary 4.6(i) and the second follows from (i) because

E ∈ K[LF ]. Our assumption implies that dK(C↾LK
,E↾LK

) = C. Thus, dM(C,D) = C. ⊠

Proposition 13.29. Let M1 and M2 be a pair of Beth companions of a quasivariety K. Then

M1↾LK
= M2↾LK

.

Proof. Since M1 and M2 are Beth companions of K, by Theorem 11.7 there exists a pair

of maps τ : LM1 → T2 and ρ : LM2 → T1 witnessing that M1 and M2 are faithfully term

equivalent relative to K, where Ti is the set of terms of Mi in a countably infinite set of

variables for i = 1, 2. By symmetry it suffices to show M1↾LK
⊆ M2↾LK

. To this end, consider

A ∈ M1. The definition of a faithful term equivalence yields ρ(A) ∈ M2 and ρ(A)↾LK
= A↾LK

(see Remark 11.12(iii)). Therefore, A↾LK
= ρ(A)↾LK

∈ M2↾LK
, as desired. ⊠

We are now ready to prove Theorem 13.2.

Proof. We first prove the inclusion K[LF ]↾LK
⊆ Kac. Consider A ∈ K[LF ]. To show that A↾LK

is absolutely closed in K, let B ∈ K with A↾LK
⩽ B. We need to prove that dK(A↾LK

,B) = A.

Since M is a pp expansion of K, Proposition 10.2 guarantees the existence of C ∈ M such that

B ⩽ C↾LK
. Then Corollary 4.6(i) yields dK(A↾LK

,B) ⊆ dK(A↾LK
,C↾LK

). As M is a Beth

companion of K, from Proposition 13.28(ii) it follows that dK(A↾LK
,C↾LK

) = A. Therefore,

dK(A↾LK
,B) = A, as desired

To prove the inclusion Kac ⊆ M↾LK
, consider A ∈ Kac. Since F ⊆ ext(K), Proposition 9.6

implies that there exists B ∈ K[LF ] such that A ⩽ B↾LK
. We show that A is the universe

of a subalgebra of B. From A ⩽ B↾LK
it follows that A is closed under the operations of

the language of K. Recall that every operation symbol of LF − LK is of the form gf for

some f ∈ F . Consider an n-ary f ∈ F . We will show that A is closed under gBf . Since

B ∈ K[LF ], we have gBf = fB↾LK . Let a1, . . . , an ∈ A. Since fB↾LK is total, Theorem 4.10

yields fB↾LK (a1, . . . , an) ∈ dK(A,B↾LK
). As A is absolutely closed in K by assumption, we

have dK(A,B↾LK
) = A, and hence fB↾LK (a1, . . . , an) ∈ A. We have shown that A is the

universe of a subalgebra of B. Therefore, we can expand A to an LM-algebra A∗ by setting

gA
∗

f = gBf ↾A for every gf ∈ LF − LK. The definition of A∗ guarantees that A∗ ⩽ B. Since

B ∈ M and M is a universal class by Theorem 10.3(i), we obtain A∗ ∈ S(M) ⊆ M. Thus, we

conclude that A = A∗↾LK
∈ M↾LK

.
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It remains to show that, when M is an equational Beth companion of K, we have Kac = M↾LK
.

Suppose that M is an equational Beth companion of K. Then M is faithfully term equivalent

to a Beth companion M∗ of K induced by a family of operations defined by conjunctions

of equations. Moreover, Theorem 10.4 yields that M∗ is of the form K[LF∗ ] for some

F∗ ⊆ exteq(K). Then K[LF∗ ]↾LK
= M∗↾LK

. Since K[LF∗ ]↾LK
⊆ Kac ⊆ M∗↾LK

by the first two

paragraphs of this proof, we have Kac = M∗↾LK
. As M and M∗ are Beth companions of K,

Proposition 13.29 yields M↾LK
= M∗↾LK

. Hence, we conclude that Kac = M↾LK
. ⊠

Lastly, we prove Theorem 13.3.

Proof. In view of Proposition 13.28(ii), to prove that M is a Beth companion of K, it suffices

to show that dK(A↾LK
,B↾LK

) = A for all A ⩽ B ∈ M. To this end, consider A ⩽ B ∈ M.

Since M is a universal class by Theorem 10.3(i), we obtain A ∈ M. Therefore, the assumption

that M↾LK
⊆ Kac implies A↾LK

∈ Kac. Hence, dK(A↾LK
,B↾LK

) = A. ⊠

14. Classes without a Beth companion

We close this work by providing some examples of classes of algebras lacking a Beth

companion. The two main results of the section concern the varieties of monoids and

of commutative monoids (Theorem 14.1), and certain quasivarieties of Heyting algebras

(Theorem 14.11). We begin with the result on monoids.

Theorem 14.1. The varieties of monoids and of commutative monoids lack a Beth companion.

The theorem above is the starting point of a complete description of the varieties of

commutative monoids admitting a Beth companion. As the methods utilized in its proof go

beyond the theory of implicit operations developed here, we will provide such a description

in the separate work [31].

In order to prove Theorem 14.1, we first need to introduce the notion of a dominion base

and establish some technical results about dominion bases and implicit operations.

Definition 14.2. Let K be a class of algebras and ∆ ⊆ imppp(K). We say that ∆ is a

dominion base for K when for all A ⩽ B ∈ K and b ∈ dK(A,B) there exist f ∈ ∆ and

⟨a1, . . . , an⟩ ∈ dom(fB) ∩ An such that fB(a1, . . . , an) = b.

Theorem 4.10 states that imppp(K) is a dominion base for every elementary class K, and

Isbell’s Zigzag Theorem 4.9 states that Isbell’s operations (see Example 3.14) form a dominion

base for the varieties of monoids and of commutative monoids. The following result illustrates

how having a concrete and transparent dominion base simplifies the task of finding interpolants

for implicit operations.

Theorem 14.3. Let K be a quasivariety with dominion base ∆ and f ∈ imppp(K) of arity n.

Then there exist g ∈ ∆ and n-ary terms t1, . . . , tm of K such that the composition g(tK1 , . . . , t
K
m)

interpolates f in K.

Proof. Let φ be a pp formula defining f . Then

φ(x1, . . . , xn, y) = ∃z1, . . . , zkψ(z1, . . . , zk, x1, . . . , xn, y),
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where ψ is a conjunction of equations. Let X = {z1, . . . , zk, x1, . . . , xn, y}. Since K is a

quasivariety, the free algebra FK(X) belongs to K (see Theorem 2.19). We denote by θ the

K-congruence of FK(X) generated by the pairs ⟨s1, s2⟩, where s1 ≈ s2 is an equation in ψ.

Consider B = FK(X)/θ and A = SgB(x1/θ, . . . , xn/θ). The definition of θ implies that

B ⊨ ψ(z1/θ, . . . , zk/θ, x1/θ, . . . , xn/θ, y/θ).

Therefore, ⟨x1/θ, . . . , xn/θ⟩ ∈ dom(fB) and fB(x1/θ, . . . , xn/θ) = y/θ because f is defined by

φ. As f ∈ imppp(K) by assumption and x1/θ, . . . , xn/θ ∈ A by the definition of A, it follows

from Theorem 4.10 that y/θ ∈ dK(A,B). Since ∆ is a dominion base for K and A is generated

by x1/θ, . . . , xn/θ, there exist an m-ary g ∈ ∆ and terms t1(x1, . . . , xn), . . . , tm(x1, . . . , xn) of

K such that

⟨tB1 (x1/θ, . . . , xn/θ), . . . , t
B
m(x1/θ, . . . , xn/θ)⟩ ∈ dom(gB) (64)

and

gB(tB1 (x1/θ, . . . , xn/θ), . . . , t
B
m(x1/θ, . . . , xn/θ)) = y/θ. (65)

We will prove that g(tK1 , . . . , t
K
m) interpolates f in K. To this end, consider C ∈ K and

c1, . . . , cn, d ∈ C such that ⟨c1, . . . , cn⟩ ∈ dom(fC) and fC(c1, . . . , cn) = d. We need to show

that

⟨tC1 (c1, . . . , cn), . . . , tCm(c1, . . . , cn)⟩ ∈ dom(gC) and gC(tC1 (c1, . . . , cn), . . . , tCm(c1, . . . , cn)) = d.

Since f is defined by φ, from fC(c1, . . . , cn) = d it follows that C ⊨ ψ(e1, . . . , ek, c1, . . . , cn, d)

for some e1, . . . , ek ∈ C. Therefore,

C ⊨ s1(e1, . . . , ek, c1, . . . , cn, d) ≈ s2(e1, . . . , ek, c1, . . . , cn, d) (66)

for every equation s1 ≈ s2 in ψ. As X = {z1, . . . , zk, x1, . . . , xn, y} is a set of free generators

for FK(X), there exists a homomorphism h : FK(X) → C such that h(zi) = ei and h(xi) = ci
for each i, and h(y) = d. The definition of θ and (66) yield θ ⊆ Ker(h). Since B = FK(X)/θ,

Proposition 2.6 implies that the homomorphism h induces a homomorphism k : B → C such

that k(zi/θ) = ei and k(xi/θ) = ci for each i, and k(y/θ) = d. Since k is a homomorphism,

we obtain

tCi (c1, . . . , cn) = tBi (k(x1/θ), . . . , k(xn/θ)) = k(tBi (x1/θ, . . . , xn/θ))

for each i ⩽ m. So, (64) implies ⟨tC1 (c1, . . . , cn), . . . , tCm(c1, . . . , cn)⟩ ∈ dom(gC) because

g ∈ imppp(K). We also have

gC(tC1 (c1, . . . , cn), . . . , tCm(c1, . . . , cn))

= gC(tC1 (k(x1/θ), . . . , k(xn/θ)), . . . , t
B
m(k(x1/θ), . . . , k(xn/θ)))

= k(gB(tB1 (x1/θ, . . . , xn/θ), . . . , t
B
m(x1/θ, . . . , xn/θ)))

= k(y/θ)

= d,

where the first equality holds because k(xi/θ) = ci for each i, the second follows from the

assumptions that k is a homomorphism and g ∈ imppp(K), the third from (65), and the
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last from k(y/θ) = d. Hence, we conclude that gC(tC1 (c1, . . . , cn), . . . , tCm(c1, . . . , cn)) = d, as

desired. ⊠

We now apply Theorem 14.3 and the fact that Isbell’s operations form a dominion base to

deduce a useful property of implicit operations of the variety of (commutative) monoids.

Proposition 14.4. Let K be either the variety of monoids or the variety of commutative

monoids. For every unary f ∈ imppp(K) there exist l, r ∈ N such that alfA(a) = ar for all

A ∈ K and a ∈ dom(fA).

Proof. Consider a unary f ∈ imppp(K). For each n ∈ N we denote by gn the implicit operation

of K defined by the n-th Isbell’s formula (see Example 3.14). As Isbell’s operations form

a dominion base for K, Theorem 14.3 yields n ∈ N and unary terms t1, . . . , t2n+1 such that

gn(tK1 , . . . , t
K
2n+1) interpolates f in K. As unary terms of K are equivalent to powers of a

variable, there exist e1, . . . , en+1 ∈ N such that K ⊨ ti(x) ≈ xei for each i ⩽ 2n+ 1.

Recall that gA0 is the identity function for every A ∈ K. Thus, when n = 0 we have

fA(a) = tA1 (a) = ae1 for all A ∈ K and a ∈ dom(fA), and hence we can take l = 0 and r = e1.

So, in the rest of the proof we will assume that n > 0. Let l =
∑n

i=1 e2i and r =
∑n

i=0 e2i+1.

Consider A ∈ K and a ∈ dom(fA). We show that alfA(a) = ar. To this end, let ai = aei for

every i ⩽ 2n + 1. Then fA(a) = gAn (a1, . . . , a2n+1) because gn(tK1 , . . . , t
K
2n+1) interpolates f

in K and K ⊨ ti(x) ≈ xei for each i ⩽ 2n + 1. Notice that a1, . . . , a2n+1 pairwise commute

because they are powers of a in A.

We will rely on the next fact, which was established under the commutativity assumption

in [71, proof of 2.7].

Claim 14.5. We have (
∏n

i=1 a2i)f
A(a) =

∏n
i=0 a2i+1.

Proof of the Claim. As fA(a) = gAn (a1, . . . , a2n+1), the definition of gn implies that there

exist c1, . . . , cn ∈ A satisfying

(i) fA(a) = a1c1;

(ii) a2ici = a2i+1ci+1 for every 1 ⩽ i ⩽ n− 1;

(iii) a2ncn = a2n+1.

Let cn+1 = 1A. To conclude the proof of the claim, it suffices to show that for every positive

m ⩽ n, (
m∏
i=1

a2i

)
fA(a) =

(
m∏
i=0

a2i+1

)
cm+1. (67)

This is because we set cn+1 = 1A and, therefore, for m = n we obtain (
∏n

i=1 a2i)f
A(a) =

(
∏n

i=0 a2i+1)cn+1 =
∏n

i=0 a2i+1, as desired.

The proof of the above display proceeds by induction on m ⩽ n. First, we have

a2f
A(a) = a2a1c1 = a1a2c1 = a1a3c2,

where the first equality holds by (i), the second because a1 and a2 commute, and the third

follows from (ii). Therefore, (67) holds for m = 1. Suppose now that 1 < m ⩽ n. We
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show that (67) holds for m under the assumption that it holds for m− 1, which means that

(
∏m−1

i=1 a2i)f
A(a) = (

∏m−1
i=0 a2i+1)cm. We have(

m∏
i=1

a2i

)
fA(a) = a2m

(
m−1∏
i=1

a2i

)
fA(a) = a2m

(
m−1∏
i=0

a2i+1

)
cm =

(
m−1∏
i=0

a2i+1

)
a2mcm

=

(
m−1∏
i=0

a2i+1

)
a2m+1cm+1 =

(
m∏
i=0

a2i+1

)
cm+1,

where the first and third equalities hold because a2m commutes with every ai, the second

follows from the induction hypothesis, the fourth is a consequence of (ii) when i ⩽ n− 1 and

of (iii) and cn+1 = 1A when m = n, and the last is straightforward. This shows that (67)

holds for every m ⩽ n. ⊠

Since l =
∑n

i=1 e2i and r =
∑n

i=0 e2i+1, we have

n∏
i=1

a2i =
n∏

i=1

ae2i = al and
n∏

i=0

a2i+1 =
n∏

i=0

ae2i+1 = ar.

Therefore, Claim 14.5 yields

alfA(a) =

(
n∏

i=1

a2i

)
fA(a) =

n∏
i=0

a2i+1 = ar. ⊠

We will also need the following technical result.

Proposition 14.6. Let K be a quasivariety with a Beth companion of the form S(K[LF ]).

Then for every f ∈ imppp(K) there exists g ∈ extpp(K) that interpolates f in K[LF ]↾LK
.

Proof. Since f ∈ imppp(K), by Theorem 11.6 there exists a term t of LF that interpolates f

in S(K[LF ]). As f has positive arity and t interpolates f , it follows that t is not a constant.

So, Proposition 10.22(ii) yields g ∈ extpp(K) such that

tB = gB↾LK for every B ∈ K[LF ].

We will show that g interpolates f in K[LF ]↾LK
. Let A ∈ K[LF ]↾LK

and ⟨a1, . . . , an⟩ ∈
dom(fA). As A[LF ] ∈ K[LF ] and A = A[LF ]↾LK

, the above display implies that tA[LF ] = gA.

It follows that gA is total, and hence ⟨a1, . . . , an⟩ ∈ dom(gA). Since t interpolates f in

S(K[LF ]), we obtain

fA(a1, . . . , an) = fA[LF ]↾LK (a1, . . . , an) = tA[LF ](a1, . . . , an) = gA(a1, . . . , an).

We conclude that g interpolates f in K[LF ]↾LK
. ⊠

We are now ready to prove Theorem 14.1.

Proof. Let K be either the variety of monoids or the variety of commutative monoids and

assume, with a view to contradiction, that K has a Beth companion. Corollary 11.5 implies

that K has also a Beth companion of the form S(K[LF ]). Let f be the operation of taking

inverses in monoids. Then f ∈ imppp(K) by Theorem 3.7. Proposition 14.6 yields a unary

g ∈ extpp(K) that interpolates f in K[LF ]↾LK
. By Proposition 14.4 there exist l, r ∈ N such
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that algA(a) = ar for all A ∈ K and a ∈ dom(gA). Since K is a variety and S(K[LF ]) a pp

expansion of K, Proposition 10.2 implies that K = S((S(K[LF ]))↾LK
). Hence, K ⊆ S(K[LF ]↾LK

).

Therefore, there exists an extension B of the multiplicative monoid Q of the rationals such

that B ∈ K[LF ]↾LK
. Then gB is total because g ∈ extpp(K) = F . Since g interpolates f in

K[LF ]↾LK
, we obtain gB(2) = fB(2) = fQ(2) = 2−1. Therefore, 2l−1 = 2lgB(2) = 2r. So,

2l−1 = 2r holds in Q. In turn, this implies l = r + 1. Consequently,

ar+1gA(a) = ar for all A ∈ K and a ∈ dom(gA). (68)

Claim 14.7. There exist C ∈ K and c ∈ C such that cr ̸= cr+1 and cr+1 = cr+2.

Proof of the Claim. Let C be the set of symbols {ci : 0 ⩽ i ⩽ r + 1} and define the following

binary operation on C

ci · cj =

{
ci+j if i+ j < r + 1;

cr+1 otherwise.

It is straightforward to verify that this defines a commutative monoid C with neutral element

c0. So, C ∈ K. Let c = c1. Then ci is the i-th power of c1 for every i ⩽ r + 1. From the

definition of C it then follows immediately that cr ̸= cr+1 and cr+1 = cr+2. ⊠

Let C and c ∈ C be as in Claim 14.7. Since g ∈ extpp(K), there exists D ∈ K such that

C ⩽ D and gD is total. From c ∈ dom(gD) and (68) it follows cr+1gD(c) = cr. Thus, using

cr+1 = cr+2, we deduce

cr = cr+1gD(c) = cr+2gD(c) = ccr+1gD(c) = ccr = cr+1,

a contradiction with cr ̸= cr+1 in C. ⊠

Remark 14.8. The proof of Theorem 14.1 can easily be adapted to show that both the variety

of semigroups and the variety of commutative semigroups lack a Beth companion. To see

this, recall that Isbell’s formulas (see Example 3.14) also form a dominion base for these

varieties (see [71, Thm. 2.3] for semigroups and [69, Thm. 1.1] for commutative semigroups).

The changes required for adapting the proof of Theorem 14.1 are limited to the following.

First, the role of the implicit operation f defined by φ = (x · y ≈ 1) ⊓ (y · x ≈ 1) should be

taken over by the implicit operation g defined by

ψ = (x2 · y ≈ x) ⊓ (y2 · x ≈ y) ⊓ (x · y ≈ y · x),

which also defines inverses when they exist. In particular, g coincides with f on Q. Moreover,

the monoids Q and C appearing in the proof of Theorem 14.1 should be replaced by their

semigroup reducts. Lastly, the proof of Claim 14.5 uses the fact that A has a neutral element,

which need not be the case if A is an arbitrary semigroup. This problem can be overcome

easily by adding a neutral element to A in the proof of that claim.

On the other hand, the implicit operation g becomes extendable when restricted to the

quasivariety CCS of cancellative commutative semigroups. In fact, an argument similar to the

one detailed in the proof of Theorem 11.9(i) shows that the pp expansion of CCS induced by

g is the Beth companion of CCS and, moreover, is term equivalent to the variety of Abelian

groups (inversion is given by g and the neutral element is rendered as the unary operation

x · g(x)). ⊠
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The second main result of the section gives a sufficient condition for a quasivariety of

Heyting algebras to lack a Beth companion. In order to state it, we first need to recall some

definitions. The first is the notion of a maximal relatively subdirectly irreducible algebra in a

quasivariety (see, e.g., [76, p. 81]).

Definition 14.9. Let K be a quasivariety. We say that A ∈ Krsi is maximal when A cannot

be properly embedded into any B ∈ Krsi. We denote by M(Krsi) the class of maximal

members of Krsi.

We will also make use of the ordered sum, an operation that has been extensively used to

study implicit definability and surjectivity of epimorphisms in varieties of Heyting algebras

(see, e.g., [90, p. 87] and [94, p. 9]). Intuitively, the ordered sum of two Heyting algebras A

and B is the result of pasting A below B and gluing the top element 1A of A to the bottom

element 0B of B.

Definition 14.10. Let A and B be a pair of Heyting algebras. Their ordered sum (also

known as vertical sum or just sum) A + B is the unique Heyting algebra whose universe is

the disjoint union of A− {1A} and B and whose lattice order is given by

c ⩽ d ⇐⇒ either (c, d ∈ A− {1A} and c ⩽A d)

or (c, d ∈ B and c ⩽B d)

or (c ∈ A− {1A} and d ∈ B),

where ⩽A and ⩽B denote the lattice orders of A and B, respectively.

In the following, for each n ∈ Z+ we will denote by Cn the n-element linearly ordered

Heyting algebra. We are now ready to state the second main result of the section.

Theorem 14.11. Let K be a relatively congruence distributive quasivariety of Heyting

algebras. If there exists a Heyting algebra A such that A + C5 ∈ M(Krsi), then K lacks a

Beth companion.

To give a better understanding of the applicability of Theorem 14.11, we rely on the next

characterization of relatively congruence distributive quasivarieties of Heyting algebras, where

HA stands for the variety of Heyting algebras.

Theorem 14.12. A quasivariety K of Heyting algebras is relatively congruence distributive if

and only if K = Q(M) for some universal class M such that M ⊆ HAfsi.

Proof. Let K be a quasivariety of Heyting algebras. Since the variety HA is congruence

distributive by Theorem 7.2, from [40, Cor. 1.4] it follows that K is relatively congruence

distributive if and only if Krfsi ⊆ HAfsi. Therefore, it only remains to prove that Krfsi ⊆ HAfsi

if and only if there exists a universal class M such that K = Q(M) and M ⊆ HAfsi.

We first establish the implication from left to right. To this end, assume that Krfsi ⊆ HAfsi.

Let M = U(Krfsi). The Subdirect Decomposition Theorem 2.9 yields K = Q(Krfsi). It follows

that K = Q(M) because Krfsi ⊆ M ⊆ K. It is well known (see, e.g., [85, Prop. A.4.3]) that a

Heyting algebra is finitely subdirectly irreducible if and only if its greatest element is join
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irreducible, a property that can be expressed with a universal sentence. Therefore, HAfsi is a

universal class by Theorem 2.1(iii). Then

M = U(Krfsi) ⊆ U(HAfsi) = HAfsi.

Thus, M has the desired properties. For the converse implication, assume that there exists

a universal class M such that K = Q(M) and M ⊆ HAfsi. Theorem 2.13 implies that

Krfsi = Q(M)rfsi ⊆ ISPu(M). Then Krfsi ⊆ U(M) by Theorem 2.2. As M is a universal class

contained in HAfsi, we obtain

Krfsi ⊆ U(M) = M ⊆ HAfsi,

as desired. ⊠

Before presenting its proof, we first establish a series of consequences of Theorem 14.11. As

every variety of Heyting algebras is congruence distributive (see Theorem 7.2), the following

is an immediate corollary of Theorem 14.11.

Corollary 14.13. Let K be a variety of Heyting algebras. If there exists a Heyting algebra A

with A + C5 ∈ M(Ksi), then K lacks a Beth companion.

We will use the following consequence of Theorem 14.11 to show that infinitely many

varieties of Heyting algebras lack a Beth companion.

Corollary 14.14. Let K be a finite set of finite Heyting algebras such that Q(K) is relatively

congruence distributive. Assume that there exists a Heyting algebra A such that A + C5 ∈ K

and A + C5 cannot be properly embedded into any member of K. Then Q(K) lacks a Beth

companion.

Proof. By Theorem 14.11 it is sufficient to show that A + C5 ∈ M(Q(K)rsi). Since K is a

finite set of finite Heyting algebras, Pu(K) ⊆ I(K) (see Proposition 2.14). Consequently, from

Theorem 2.13 it follows that Q(K)rsi ⊆ IS(K). Therefore, if A + C5 embeds properly into a

member of Q(K)rsi, then it also embeds properly into a member of K, but this contradicts

our hypothesis. Thus, A + C5 ∈ M(Q(K)rsi). ⊠

We also obtain an analogue of Corollary 14.14 for finitely generated varieties of Heyting

algebras.

Corollary 14.15. Let K be a finite set of finite Heyting algebras. Assume that there exists a

Heyting algebra A such that A + C5 ∈ K and one of the following conditions holds:

(i) A + C5 ∈ HS(B) implies A + C5
∼= B for each B ∈ K;

(ii) all members of K have size at most |A + C5|.
Then V(K) lacks a Beth companion.

Proof. Suppose that (i) holds. By Corollary 14.13 it suffices to show that A+C5 ∈ M(V(K)si).

Suppose, with a view to contradiction, that there exists D ∈ V(K)si into which A+C5 properly

embeds. Since K is a finite set of finite Heyting algebras, Pu(K) ⊆ I(K) (see Proposition 2.14).

Since V(K) is congruence distributive by Theorem 7.2, from Jónsson’s Theorem 2.12 it

follows that V(K)si ⊆ HS(K). Then D ∈ HS(K), and so there exists B ∈ K such that
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D ∈ HS(B). Since A + C5 embeds into D, we have A + C5 ∈ ISHS(B). For every class

M we have SH(M) ⊆ HS(M) (see, e.g., [21, Lem. II.9.2]) and IH(M) = H(M). Consequently,

ISHS(B) = HS(B), and hence A+C5 ∈ HS(B). Then (i) implies A+C5
∼= B. Recall that

A+C5,B ∈ K and all the members of K are finite. Therefore, since A+C5 properly embeds

into D and D ∈ HS(B), we have |A + C5| < |D| ⩽ |B|. Thus, we reached a contradiction

because A + C5
∼= B.

To conclude the proof, it is then sufficient to show that (ii) implies (i). Let B ∈ K be

such that A + C5 ∈ HS(B). Then |A + C5| ⩽ |B|. So, (ii) yields |A + C5| = |B|. Since

A+C5 ∈ HS(B) and B is finite (the latter because B ∈ K and K is a class of finite algebras

by assumption), we obtain that A + C5
∼= B. Thus, (i) holds. ⊠

Example 14.16 (Gödel algebras). A Heyting algebra is called a Gödel algebra when it satisfies

the prelinearity axiom (x → y) ∨ (y → x) ≈ 1. From a logical standpoint, the interest of

Gödel algebras is that they algebraize the Gödel-Dummett logic (see, e.g., [33, 61]).

The variety GA of Gödel algebras is generated by the class of all finite linearly ordered

Heyting algebras or by any infinite linearly ordered Heyting algebra (see [67, Thm. 1.5]).

Every proper subvariety of GA is of the form V(Cn) for n ⩾ 1 and V(Cn) ⊆ V(Cm) if and

only if n ⩽ m (see [46, 62]). The next result governs the existence of a Beth companion for

varieties of Gödel algebras.

Theorem 14.17. A variety V of Gödel algebras lacks a Beth companion if and only if

V = V(Cn) for n ⩾ 5. All the remaining varieties of Gödel algebras are their own Beth

companion.

Proof. From [90, Thm. 8.1] it follows that the varieties of Gödel algebras with the strong

epimorphism surjectivity property are exactly GA and V(Cn) for n ⩽ 4. Hence, these varieties

are their own Beth companions by Theorem 11.9(vi). Let n ⩾ 5. As Cn
∼= Cn−4 + C5, from

Corollary 14.15 it follows that V(Cn) lacks a Beth companion. ⊠

In order to prove Theorem 14.11, we first establish a series of useful results.

Proposition 14.18. Let K be a quasivariety and f ∈ extpp(K). Then fA is total for every

A ∈ HP(M(Krsi)) ∩ K.

Proof. First, assume that A ∈ M(Krsi). Since f ∈ extpp(K) and A ∈ Krsi, by Theorem 8.4

there exists B ∈ Krsi such that A ⩽ B and fB is total. The maximality of A implies that

A = B. This shows that fA is total for every A ∈ M(Krsi). Then let M = {A ∈ K :

fA is total}. We have M(Krsi) ⊆ M. Our goal is to show that HP(M(Krsi)) ∩ K ⊆ M. Since

M ⊆ K and K is a quasivariety, we have P(M)∩K = P(M). Therefore, applying Proposition 9.7

twice with O = P and O = H, we obtain

HP(M(Krsi)) ∩ K ⊆ HP(M) ∩ K ⊆ H(P(M) ∩ K) ∩ K ⊆ H(M) ∩ K ⊆ M. ⊠

Proposition 14.19. Let K be a quasivariety with a Beth companion. Moreover, let A,B ∈
HP(M(Krsi)) ∩ K be such that A ⩽ B. Then dK(A,B) = A.
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Proof. We may assume that K has a Beth companion of the form S(K[LF ]). Proposition 14.18

implies that fA and fB are total for every f ∈ F . Therefore, A[LF ] and B[LF ] are defined

and are members of K[LF ]. It then follows from Proposition 13.28(ii) that

dK(A,B) = dK(A[LF ]↾LK
,B[LF ]↾LK

) = A. ⊠

Proposition 14.20. Let K be a quasivariety. Then dK(A,B) = dKrsi(A,B) for all LK-

algebras A,B such that A ⩽ B.

Proof. From the definition of a dominion it follows immediately that dK(A,B) ⊆ dKrsi(A,B).

To prove the other inclusion, let b ∈ B and assume that b /∈ dK(A,B). Then there exist

C ∈ K and homomorphisms g, h : B → C such that g↾A = h↾A and g(b) ̸= h(b). The

Subdirect Decomposition Theorem 2.9 implies that there exists {Ci : i ∈ I} ⊆ Krsi such that

C ⩽
∏

i∈I Ci is a subdirect product. For each i ∈ I let pi : C → Ci be the restriction of the

canonical projection. Since g(b) ̸= h(b), there exists i ∈ I such that (pi ◦ g)(b) ̸= (pi ◦ h)(b).

As (pi ◦ g)↾A = pi ◦ (g↾A) = pi ◦ (h↾A) = (pi ◦h)↾A, the homomorphisms pi ◦ g, pi ◦h : B → Ci

witness that b /∈ dKrsi(A,B). Thus, dKrsi(A,B) ⊆ dK(A,B). ⊠

Proposition 14.21. Let K be a relatively congruence distributive quasivariety of Heyting

algebras. Let also A1,A2,B be Heyting algebras with B ∈ Krfsi and h : A1 × A2 → B a

homomorphism. Then there exist i ∈ {1, 2} and a homomorphism g : Ai → B such that

h = g ◦ πi, where πi : A1 ×A2 → Ai is the canonical projection map.

Proof. Since K is relatively congruence distributive and B ∈ Krfsi, from [40, Cor. 1.4] it

follows that B is a finitely subdirectly irreducible Heyting algebra. Therefore, the greatest

element 1B of B is join irreducible (see, e.g., [85, Prop. A.4.3]). Let 0Ai and 1Ai be the least

and greatest elements of Ai for i = 1, 2. Then

1B = h(⟨1A1 , 1A2⟩) = h(⟨0A1 , 1A2⟩ ∨ ⟨1A1 , 0A2⟩) = h(⟨0A1 , 1A2⟩) ∨ h(⟨1A1 , 0A2⟩).

Since 1B is join irreducible, we have

h(⟨0A1 , 1A2⟩) = 1B or h(⟨1A1 , 0A2⟩) = 1B.

By symmetry we may assume that h(⟨0A1 , 1A2⟩) = 1B. We will prove that

h(⟨a, c⟩) = h(⟨b, c⟩) for all a, b ∈ A1 and c ∈ A2. (69)

To this end, observe that

h(⟨a, c⟩) → h(⟨b, c⟩) = h(⟨a→ b, c→ c⟩) = h(⟨a→ b, 1A2⟩) ⩾ h(⟨0A1 , 1A2⟩) = 1B,

and, therefore, h(⟨a, c⟩) ⩽ h(⟨b, c⟩). An analogous argument shows that h(⟨b, c⟩) ⩽ h(⟨a, c⟩),
whence h(⟨a, c⟩) = h(⟨b, c⟩), as desired.

Lastly, from (69) it follows that ker(π2) ⊆ ker(h). As a straightforward consequence of

Proposition 2.6 (see, e.g., [11, Ex. 1.26.8]), we obtain a homomorphism g : A2 → B such that

h = g ◦ π2. ⊠

We are now ready to prove Theorem 14.11.

Proof. To simplify the notation, we let B = A + C5.
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Claim 14.22. There exists D ∈ H(B) such that D ⩽ B ×B and dK(D,B ×B) ̸= D.

Proof of the Claim. Let the elements of C5 be 0C5 = c1 < c2 < c3 < c4 < c5 = 1C5 . Recall

that B = (A− {1A}) ∪ C5. We define

D = {⟨a, a⟩ : a ∈ A− {1A}} ∪ {⟨c1, c1⟩, ⟨c2, c3⟩, ⟨c4, c4⟩, ⟨c5, c5⟩} ⊆ B ×B.

As B = A + C5 and C5 is linearly ordered, the implication →B of B can be described in

terms of the implication →A of A as follows. For all a, b ∈ B we have

a→B b =


c5 if a ⩽ b;

a→A b if a ⩽̸ b and a, b ∈ A− {1A};

b otherwise.

It is then immediate to verify that D ⩽ B ×B. Moreover, a straightforward verification

yields that the map k : B → B ×B defined as follows is a homomorphism whose image is D:

for every b ∈ B,

k(b) =


⟨b, b⟩ if b ∈ {c1, c5} ∪ (A− {1A});

⟨c2, c3⟩ if b = c2;

⟨c4, c4⟩ if b = c3;

⟨c5, c5⟩ if b = c4.

Thus, D ∈ H(B).

Therefore, it only remains to show that dK(D,B×B) ̸= D. By Proposition 14.20 we have

dK(D,B ×B) = dKrsi(D,B ×B).

Since ⟨c5, c4⟩ ∈ (B×B)−D, it suffices to show ⟨c5, c4⟩ ∈ dKrsi(D,B×B). Let g, h : B×B →
E be a pair of homomorphisms such that E ∈ Krsi and g↾D = h↾D. We need to prove that

g(⟨c5, c4⟩) = h(⟨c5, c4⟩). Since E ∈ Krsi ⊆ Krfsi, Proposition 14.21 yields that both g and

h factor through a projection. We have two cases: either g and h factor through the same

projection or not.

First, suppose that g and h factor through π1. Then there exists a pair of homomorphisms

g′, h′ : B → E such that g = g′ ◦ π1 and h = h′ ◦ π1. Therefore,

g(⟨c5, c4⟩) = g′(c5) = 1E = h′(c5) = h(⟨c5, c4⟩),

where the second and third equalities hold because c5 is the greatest element of B, and the

others because g = g′ ◦ π1 and h = h′ ◦ π1.
Next we consider the case where both g and h factor through π2. Then there exists a pair

of homomorphisms g′, h′ : B → E such that g = g′ ◦ π2 and h = h′ ◦ π2. Therefore,

g(⟨c5, c4⟩) = g′(c4) = g(⟨c4, c4⟩) = h(⟨c4, c4⟩) = h′(c4) = h(⟨c5, c4⟩),

where the middle equality holds because ⟨c4, c4⟩ ∈ D and g↾D = h↾D, and the others because

g = g′ ◦ π2 and h = h′ ◦ π2.
Lastly, suppose that g and h factor through different projections. Without loss of generality,

we may assume that g factors through π1 and h factors through π2. Then there exists a pair
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of homomorphisms g′, h′ : B → E such that g = g′ ◦ π1 and h = h′ ◦ π2. Since g↾D = h↾D
and ⟨c2, c3⟩, ⟨c4, c4⟩ ∈ D, we obtain

g′(c2) = g(⟨c2, c3⟩) = h(⟨c2, c3⟩) = h′(c3); (70)

g′(c4) = g(⟨c4, c4⟩) = h(⟨c4, c4⟩) = h′(c4). (71)

Assume, with a view to contradiction, that both g′ and h′ are injective. As B ∈ M(Krsi) by

assumption and E ∈ Krsi, it follows that g′ and h′ are isomorphisms. Since c3 is the only

element a of B such that {b ∈ B : a ⩽ b} has size 3, every automorphism of B must fix

c3. It follows that g′(c3) = h′(c3) because (h′)−1 ◦ g′ is an automorphism of B. Then (70)

yields g′(c2) = h′(c3) = g′(c3), which is impossible because g′ is injective. Therefore, either g′

or h′ is not injective. Suppose first that g′ is not injective. Then there exist a, b ∈ B such

that a ⩽̸ b and g′(a) = g′(b). As a ⩽̸ b and g′ is a homomorphism, we obtain a→B b ≠ 1B

and g′(a →B b) = g′(a) →E g′(b) = 1E. Note that every Heyting algebra homomorphism

is order preserving because it is a lattice homomorphism. Therefore, since c4 is the second

greatest element of B, we have a →B b ⩽ c4 and, consequently, 1E = g′(a →B b) ⩽ g′(c4).

So, g′(c4) = 1E. Then we have

g(⟨c5, c4⟩) = g′(c5) = 1E = g′(c4) = h′(c4) = h(⟨c5, c4⟩),

where first and last equalities hold because g = g′ ◦ π1 and h = h′ ◦ π2, the second because

c5 is the greatest element of B, the third because g′(c4) = 1E as we just observed, and the

fourth follows from (71). Next, suppose that h′ is not injective. An argument similar to the

one above shows that h′(c4) = 1E. Then

h(⟨c5, c4⟩) = h′(c4) = 1E = g′(c5) = g(⟨c5, c4⟩),

where first and last equalities hold because g = g′ ◦ π1 and h = h′ ◦ π2, the second because

h′(c4) = 1E as we just observed, and the third because c5 is the greatest element of B. We

conclude that g(⟨c5, c4⟩) = h(⟨c5, c4⟩) in all possible cases. Thus, ⟨c5, c4⟩ ∈ dKrsi(D,B ×B),

as desired.

⊠

Let D be as in Claim 14.22. As B ∈ K, D ⩽ B × B, and K is a quasivariety, we

obtain D,B × B ∈ K. Since B ∈ M(Krsi) and D ∈ H(B), it follows that D,B × B ∈
HP(M(Krsi)) ∩ K. If K had a Beth companion, then Proposition 14.19 would imply that

dK(D,B ×B) = D, contradicting Claim 14.22. Thus, K lacks a Beth companion. ⊠
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[62] T. Hecht and T. Katriňák. Equational classes of relative Stone algebras. Notre Dame J. Formal Log.,

13:248–254, 1972.

[63] W. Hodges. Model Theory. Cambridge University Press, 1993.

[64] E. Hoogland. Algebraic characterizations of various Beth definability properties. Studia Logica, 65(1):91–

112, 2000.

[65] E. Hoogland. Definability and Interpolation: Model-theoretic Investigations. Ph.D. thesis, University of

Amsterdam, 2001.

[66] A. Horn. The separation theorem of intuitionist propositional calculus. J. Symbolic Logic, 27:391–399,

1962.

[67] A. Horn. Logic with truth values in a linearly ordered Heyting algebra. J. Symb. Logic, 34:395–408,

1969.

[68] J. M. Howie. Isbell’s zigzag theorem and its consequences. In Semigroup theory and its applications

(New Orleans, LA, 1994), volume 231 of London Math. Soc. Lecture Note Ser., pages 81–91. Cambridge

Univ. Press, Cambridge, 1996.

[69] J. M. Howie and J. R. Isbell. Epimorphisms and dominions. II. J. Algebra, 6:7–21, 1967.

[70] T. Hu. Stone duality for primal algebra theory. Math. Z., 110:180–198, 1969.

[71] J. R. Isbell. Epimorphisms and dominions. In Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965),

pages 232–246. Springer-Verlag New York, Inc., New York, 1966.

[72] J. R. Isbell. Epimorphisms and dominions. IV. J. London Math. Soc. (2), 1:265–273, 1969.

[73] K. Kaarli and A. F. Pixley. Polynomial completeness in algebraic systems. Chapman & Hall/CRC,

Boca Raton, FL, 2001.

[74] K. A. Kearnes and E. W. Kiss. The shape of congruence lattices. Mem. Amer. Math. Soc., 222(1046),

2013.

[75] N. Kimura. On Semigroups. Ph.D. thesis, Tulane University of Louisiana, 1957.
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[87] R. Magari. Varietá a quozienti filtrali. Ann. Univ. Ferrara, Sez. VII:5–20, 1969.



120 LUCA CARAI, MIRIAM KURTZHALS, AND TOMMASO MORASCHINI

[88] L. L. Maksimova. Projective Beth properties in modal and superintuitionistic logics. Algebra Log.,

38(3):316–333, 379, 1999.

[89] L. L. Maksimova. Superintuitionistic logics and the projective Beth property. Algebra Log., 38(6):680–696,

769, 1999.

[90] L. L. Maksimova. Intuitionistic logic and implicit definability. Ann. Pure Appl. Logic, 105(1-3):83–102,

2000.

[91] E. Matlis. The minimal prime spectrum of a reduced ring. Illinois J. Math., 27(3):353–391, 1983.

[92] A. Mitschke. Near unanimity identities and congruence distributivity in equational classes. Algebra

Universalis, 8(1):29–32, 1978.

[93] T. Moraschini, J. G. Raftery, and J. J. Wannenburg. Epimorphisms, definability and cardinalities.

Studia Logica, 108(2):255–275, 2020.

[94] T. Moraschini and J. J. Wannenburg. Epimorphism surjectivity in varieties of Heyting algebras. Ann.

Pure Appl. Logic, 171(9):102824, 31, 2020.

[95] D. Mundici. Free products in the category of abelian l-groups with strong unit. J. Algebra, 113(1):89–109,

1988.
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