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Abstract

A family of partial functions of a class of algebras K is said to be an implicit operation of K when it
is defined by a first order formula and it is preserved by homomorphisms. In this work, we develop
the theory of implicit operations from an algebraic standpoint.

Notably, the implicit operations of an elementary class K are exactly the partial functions on K
definable by existential positive formulas. For instance, “taking inverses” is an implicit operation of
the class of monoids, defined by the conjunction of the equations zy = 1 and yx = 1, saying that
y is the inverse of x. As this example suggests, implicit operations need not be definable by the
terms of the corresponding class of algebras. In fact, the demand that every implicit operation of a
universal class K be interpolated by a family of terms is equivalent to the demand that K has the
strong epimorphism surjectivity property.

However, implicit operations are always interpolated by families of implicit operations of a
simpler kind, namely, those defined by pp formulas, i.e., formulas of the form &y, where ¢ is a
conjunction of equations. Motivated by this, we establish an ezistential elimination theorem stating
that, when K is a quasivariety with the amalgamation property, every implicit operation of K is
interpolated by a family of implicit operations defined by conjunctions of equations (i.e., by pp
formulas without existential quantifiers). We also provide a series of methods to test whether a
concrete class of algebras has the strong epimorphism surjectivity property or, equivalently, to test
whether interpolation can be carried out using terms only.

As the implicit operations of a class of algebras K need not belong to the language of K, it is
natural to wonder whether K can be expanded with its implicit operations. The main obstacle
is that, in general, implicit operations need not be total. Accordingly, we say that an implicit
operation of K is extendable when every member of K can be extended to one in which the operation
is total. For instance, the operation of “taking inverses” is not extendable in the class of monoids,
but it becomes so in the class of cancellative commutative monoids because every such monoid
embeds into an Abelian group.

When expanding a class of algebras K with its pp definable extendable implicit operations produces
a class M in which every implicit operations is interpolated by a family of terms, we say that M is
a Beth companion of K. In the context of quasivarieties, Beth companions are essentially unique,
in the sense that all the Beth companions of a quasivariety are term equivalent. However, Beth
companions need not exist in general: while Abelian groups are the Beth companion of cancellative
commutative monoids, the class of all (commutative) monoids lacks a Beth companion. A series
of tools to describe the Beth companion of a concrete class of algebras is also exhibited, drawing
connections with absolutely closed, injective, and saturated algebras.

The appeal of Beth companions depends largely on whether the structure theory of a class is
improved by moving to its Beth companion. We show that this is indeed the case by proving
that, under minimal assumptions, every Beth companion of a relatively congruence distributive
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quasivariety whose class of relatively finitely subdirectly irreducible members is closed under
nontrivial subalgebras is an arithmetical variety with the congruence extension property. This
theorem applies, for instance, to the quasivariety of reduced commutative rings of characteristic
zero (which lacks the properties given by the theorem) and its Beth companion, namely, the variety
of meadows of characteristic zero. As a corollary, we obtain that the Beth companion of a relatively
filtral quasivariety must be a discriminator variety.

A variety of examples, together with their Beth companions, are discussed (see Table 1). These
include both examples from classical algebra such as semigroups and monoids (both with and
without commutativity and cancellativity), Abelian ¢-groups, torsion-free Abelian groups, and
reduced commutative rings, as well as examples with a logical motivation such as (bounded)
distributive lattices, Hilbert algebras, Heyting algebras, and MV-algebras.

Class Beth companion ‘ Location ‘
universal classes with the strong epi- | themselves Thm. 11.9
morphism surjectivity property
relatively filtral quasivarieties discriminator varieties Cor. 12.11
monoids no Beth companion Thm. 14.1
semigroups no Beth companion Rem. 14.8
commutative monoids no Beth companion Thm. 14.1
commutative semigroups no Beth companion Rem. 14.8
cancellative commutative monoids | Abelian groups Thm. 11.9
cancellative commutative semigroups | Abelian groups Rem. 14.8
torsion-free Abelian groups Abelian groups with division Thm. 13.10
Abelian ¢-groups Abelian (-groups with division Thm. 13.16
reduced commutative rings of char-| meadows of characteristic zero Exa. 12.12
acteristic zero
distributive lattices relatively complemented distributive | Thm. 11.9
lattices
bounded distributive lattices Boolean algebras Thm. 11.9
Hilbert algebras implicative semilattices Thm. 11.9
pseudocomplemented  distributive | Heyting algebras of depth < 2 Thm. 11.9
lattices
varieties generated by a linearly or- | no Beth companion if 5 < |A| < w | Thm. 14.17
dered Heyting algebra A and V(A) otherwise
MV-algebras MV-algebras with division Thm. 13.21
varieties generated by an MV-algebra | varieties generated by the expansion | Thm. 13.27
of the form L, of L,, with a constant for %

TABLE 1. Some classes of algebras and their Beth companions.
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1. FORMULAS, COMPACTNESS, AND PRESERVATION THEOREMS

Throughout this work, we will assume familiarity with the notions of an algebra and a
homomorphism from universal algebra (see, e.g., [11, 21]), with simple constructions such as
direct products or subalgebras, as well as with first order formulas and their interpretation in
mathematical structures (see, e.g., [35, 63]). In doing so, we will restrict our attention to
algebraic languages. Furthermore, classes of algebras K will be always assumed to be classes
of similar algebras, that is, algebras with a common language. Given a pair of algebras A
and B, we write A < B to indicate that A is a subalgebra of B. We denote the direct
product of a family {A; : i € I} of similar algebras by [],.; A; and the projection maps by
P [l,e Ai = A;j for every j € I. We also write A; x --- x A, for the product of a finite
family {A4,..., A, }.

By a formula we always mean a first order formula. Given a formula ¢, we write ¢(x1, ..., x,)
to indicate that the free variables of ¢ are among x1,...,x,. We denote the conjunction,
disjunction, and implication of a pair of formulas ¢ and ¢ by ¢ M, p U, and ¢ — 1,
respectively. Moreover, we denote the negation of a formula ¢ by —¢. When ¢ is an equation
t1 = ty, we often write ¢; % t5 as a shorthand for —(¢; = t3). Given an algebra A, a formula
o(x1,...,x,), and aq,...,a, € A, we write A F ¢(ay,...,a,) to indicate that ¢ holds in A
of the elements ay,...,a,. When AF p(ay,...,a,) for all ay,...,a, € A, we say that ¢ is
valid in A and write A F ¢. Similarly, if ® is a set of formulas, we write A F ®, and say that
A is a model of ®, to indicate that A F ¢ for each ¢ € ®. This notion extends to classes of
algebras K as follows: we say that a formula ¢ is valid in K and write K F ¢ when A F ¢ for
each A € K. Similarly, we write K E ® when K F ¢ for each ¢ € ®. We always allow two
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special formulas T and | without free variables and assume that T is valid in every algebra,
while L is not valid in any algebra.

A pair of formulas p(z1,...,2,) and ¥(xq,...,x,) is said to be equivalent in a class of
algebras K when for all A € K and a4,...,a, € A,

AFEp(ar,...,a,) <= AEY(ai,... a,).

When ¢ and v are equivalent in every class of algebras, we simply say that they are equivalent.
A formula is said to be existential positive when it is of the form

dx1, ..., 2,00, (1)

where ¢ is built from equations, T, and | using only M and LI. An existential positive formula
of the form in (1) is called a primitive positive formula (pp formula for short) when ¢ is a
finite conjunction of equations.! Since existential quantifiers and conjunctions distribute over
disjunctions up to equivalence, every existential positive formula is equivalent to a disjunction
of pp formulas. Lastly, a formula is said to be universal when it is of the form Vxy,..., z,p,
where ¢ is a quantifier-free formula.

Let K be a class of algebras. A formula ¢(x1,...,z,) is said to be preserved by

(i) homomorphisms in K when for every homomorphism h: A — B with A, B € K and
ai,...,a, € A,
if AE p(ay,...,a,), then B E ¢(h(ay),...,h(a,));

(ii) direct products in K when for all {A;:i € I} C Kand ay,...,a, € [[;o; A,

if A; F @(pi(ar),...,pi(a,)) for each i € I, then HAi Fola,...,a,);

iel
(iii) subalgebras in K when for all A < B € K and aq,...,a, € A,
if BF ¢(ay,...,a,), then AF ¢(ay,...,a,).

A class of algebras K is said to be elementary when it can be axiomatized by a set of
formulas @, i.e., K is the class of models of ®. We rely on the following preservation theorem
for elementary classes.

Theorem 1.1. Let K be an elementary class. A formula p(x1,...,x,) is preserved by

(i) homomorphisms in K if and only if it is equivalent in K to an existential positive formula;
(ii) homomorphisms and direct products in K if it is a pp formula;
(iii) subalgebras in K if and only if it is equivalent in K to a universal formula.

Proof. (i): This fact is known as the homomorphism preservation Theorem and is due to Los,
Lyndon, and Tarski [96, 86, 102]. Since we have not been able to find this result relativized
to elementary classes explicitly stated in the literature, we provide a complete proof here.
The argument requires some basic notions from the model theory of structures in languages
containing both function and relation symbols that can be found in any standard book on
model theory such as [63].

We admit the empty conjunction, which is defined to be T.
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For every A € K let R4 be the n-ary relation on A defined by (ai,...,a,) € R4 if
and only if A E ¢(ay,...,a,). We denote by A* the structure obtained by equipping the
algebra A with R4. Then K* = {A* : A € K} is an elementary class in the language of
K expanded with an n-ary relation symbol R. Indeed, since K is an elementary class, an
axiomatization of K* is obtained by adding to the axiomatization of K the first order formula
R(zy,...,2,) < p(x1,...,2,). Since K* is elementary, [26, Thm. 6.2(3)] yields that the
following conditions are equivalent:

(a) for every homomorphism h: A — B between members of K and ay,...,a, € A we have
that (ai,...,a,) € R4 implies (h(ay),...,h(a,)) € RB;

(b) there exists an existential positive formula ¢ in the language of K such that for all A € K
and ay,...,a, € A we have {(ay,...,a,) € R4 if and only if A F ¢(ay,...,a,).

It follows immediately from the definition of R4 and R that condition (a) is equivalent to
being preserved by homomorphisms in K, while condition (b) says that ¢ is equivalent to an
existential positive formula in K. We then conclude that ¢ is preserved by homomorphisms
in K if and only if it is equivalent in K to an existential positive formula, as desired.

(ii): Suppose that ¢ is a pp formula. As every pp formula is an existential positive formula,
(i) implies that ¢ is preserved by homomorphisms in K. We show that ¢ is also preserved by
direct products as well. Since ¢(z1,...,z,) is a pp formula, it is of the form

2y, 2m(X, o Ty 21y Zm)s

where 1) is a finite conjunction of equations. Consider {A; :i € I} C K and ay,...,a, €
[L;c; Ai such that A; F @(pi(ai),...,pi(a,)) for each ¢ € I. Our goal is to show that
[Lic; Ai E @las, ..., a,). Forevery i € I, from A; F ¢(pi(a1),...,pi(a,)) it follows that there
exists (b, ..., bl ) € A™ such that

Ai = w(pi(al)v s 7pi<an)7bzia s 7b:n>

It is straightforward to verify that conjunctions of equations and T are preserved by direct
products. Therefore, letting by = (b} : 4 € I),...,b,, = (b, :i € I), we obtain

[TAF v, .. anbi, ... b).
iel
Hence, we conclude that [[,.; A; F ¢(a1, ..., a,).
(iii): See, e.g., [63, Thm. 6.5.4] and the subsequent paragraph. X
We recall the Compactness Theorem of first order logic (see, e.g., [63, Thm. 6.1.1]).

Compactness Theorem 1.2. A set of formulas ® has a model if every finite subset of ®
has a model.

For the present purpose, it is convenient to phrase the Compactness Theorem in terms of
infinite conjunctions and disjunctions as well. To this end, we denote the conjunction and
the disjunction of a (possibly infinite) set of formulas ®, respectively, by

[]® and | |@.
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When ® = (), we assume that [[® = T and | |® = L. Given a pair of sets of formulas ® and
U with free variables among (z; : ¢ € I), an algebra A, and a sequence @ = (a; : i € I) of

AF <|_|c1> = |_|\1/)(a)
to indicate that if A F ¢(@) for each ¢ € ®, there exists ¢ € ¥ such that A F ¢(@). When
the above display holds for every @, we write A E[]® — | |¥. Similarly, given K a class of
algebras, we write K []® — | |V to indicate that AE[|® — | |V for each A € K.
A standard argument shows that the Compactness Theorem 1.2 is equivalent to the

elements of A, we write

following.

Compactness Theorem 1.3. Let K be an elementary class. For each pair of sets of formulas
® and VU,

if K |_|(I> — |_|\IJ, then K E |_|<I>' — |_|\IJ’ for some finite ® C & and V' C W.
We will make use of the following version of the Compactness Theorem for pp formulas.

Corollary 1.4. Let K be an elementary class closed under direct products. For each pair of
sets of pp formulas ® and ¥ with W # (),

z'fK|=|_|<I>—>|_|\II, thenKFZHq)’%wforsomeﬁmte ' C ® andyp € 0.

Proof. Suppose that KE[]® — | |¥. By the Compactness Theorem 1.3 there exist finite

®" C & and ¥ C ¥ such that
KE[ ]2 —[ |v. (2)

As U # (), we may assume that W' # (). Then consider an enumeration V' = {t,...,9,}.
To conclude the proof, it suffices to show that K £ []®" — ; for some i < n. Suppose
the contrary, with a view to contradiction. Then let zq,...,z,, be the free variables of
[19" — || ¥'. For each i < n there exist A; € K and a!,...,a!, € A; such that

Ai|=|_|<I>’(ail,...,ain) and A; ¥ ;(al,....a). (3)

r'm

Then consider the elements a; = (@} : i < n),...,an = {(a’, :i < n) of Ay X --- x A,. From

the left hand side of the above display, the assumption that @' is a set of pp formulas, and
Theorem 1.1(ii) it follows that

A ><---><An|=|_|<I>’(a1,...,am).

As Aq,..., A, € K and K is closed under direct products by assumption, we obtain A; X
-+ x A, € K. Together with (2) and the above display, this yields

A1X"'XAn':’lbi<a1,...,CLm)

for some ¢ < n. From the above display, Theorem 1.1(ii) and the assumption that v; is a pp
formula it follows that A; E ¥;(p;(a1), ..., pi(an)). Together with the definition of ay, ..., ay,,
this amounts to A; E ¥;(al,...,a’,), a contradiction with the right hand side of (3). X

» ' m

The following may be regarded as a converse to Theorem 1.1(ii) under some additional
assumptions.
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Theorem 1.5. Let K be an elementary class closed under direct products and ¢ a formula
that is preserved by homomorphisms and direct products in K. Then ¢ is equivalent in K to a
pp formula.

Proof. As ¢ is preserved by homomorphisms in K, Theorem 1.1(i) yields an existential
positive formula v that is equivalent in K to . Since 1 is an existential positive formula,
it is equivalent to a finite disjunction ¥, U - - - L), of pp formulas v;. It is then sufficient
to show that there exists ¢ < m such that K E ¢ <> v;. Since KE ¢ — (¢ U -+ U y,),
by Corollary 1.4 there exists ¢ < m such that K E ¢ — ;. Because 1 is equivalent to
Yy U - Uy, we have K FE 1), — 9. Thus, the formula 1, and hence also ¢, is equivalent in
K to v;, which is a pp formula. X

We close this introductory section by recalling a fundamental theorem on ultraproducts
known as Lo$” Theorem (see, e.g., [21, Thm. V.2.9]). To this end, given a family of algebras
{A; i e}, aformula p(x,...,2,), and a4,...,a, € [];o; A, let

le(ar,...,a)]={iel: A F o(piar),...,pi(ay))}

Lo$’ Theorem 1.6. Let {A; :i € I} be a family of algebras and U an ultrafilter on I. For
every formula p(x1,...,2,) and ay, ..., a, € [[;c; Ai we have

HAZ-/U Fola /U, ... a,/U) <= [e(ai,...,a,)] € U.
icl
We denote by P, the class operator of closure under ultraproducts. As a consequence of
Los” Theorem, every elementary class is closed under P,.

2. UNIVERSAL ALGEBRA

This section reviews the main tools of general algebraic nature that will be employed in this
monograph. The reader need not read it in its entirety before proceeding with the subsequent
sections and can come back to it each time they encounter a new notion.

We denote the class operators of closure under isomorphic copies, subalgebras, homomorphic
images, direct products, and ultraproducts by I, S, H, P, and P,, respectively. A class of
algebras is said to be:

(i) a wvariety when it is closed under H, S, and P;
(i) a quasivariety when it is closed under I, S, P, and P, ;
(iii) a universal class when it is closed under I, S, and P,.

While every variety is a quasivariety and every quasivariety is a universal class, the converses
are not true in general. We call proper the quasivarieties that are not varieties and the
universal classes that are not quasivarieties. Examples of a proper quasivariety and a proper
universal class are the classes of cancellative commutative monoids (Example 8.8) and of
fields (Example 3.16), respectively.

The next theorem provides an alternative characterization of the above mentioned classes
in terms of axiomatizability by certain types of formulas (see, e.g., [21, Thms. 11.11.9 &
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V.2.25 & V.2.20]). We recall that a formula is called a quasiequation when it is of the form

H@%gp,

where ® U {} is a finite set of equations. When ® = (), the above quasiequation is equivalent
to the equation ¢. Consequently, every equation is equivalent to a quasiequation.

Theorem 2.1. The following conditions hold for a class of algebras K:

(i) K is a variety if and only if it can be axiomatized by a set of equations;
(i) K is a quasivariety if and only if it can be axiomatized by a set of quasiequations;
(iii) K is a universal class if and only if it can be aziomatized by a set of universal formulas.

We denote the least variety, the least quasivariety, and the least universal class containing
a class of algebras K by V(K), Q(K), and U(K), respectively. A variety (resp. quasivariety) K
is finitely generated when K = V(M) (resp. K = Q(M)) for a finite set M of finite algebras.
The following characterizes V(K), Q(K), and U(K) in terms of the class operators (see, e.g.,
21, Thms. IL9.5 & V.2.25 & V.2.20)).

Theorem 2.2. For every class of algebras K,
V(K) = HSP(K), Q(K)=ISPP,(K), and U(K) = ISP,(K).
The following is a straightforward consequence of Theorem 2.1.

Corollary 2.3. The following conditions hold for a class of algebras K:

(i) V(K) is the class of models of all the equations valid in K;
(i1) Q(K) is the class of models of all the quasiequations valid in K;
(iii) U(K) s the class of models of all the universal formulas valid in K.

We will make use of the following closure property of universal classes (see, e.g., [35,
Thm. 3.2.3]).

Proposition 2.4. Universal classes are closed under the formation of unions of chains of
algebras.

As quasivarieties need not be closed under H, the following concept is often useful. Let K
be a quasivariety and A and algebra (not necessarily in K). A congruence 6 of A is said to
be a K-congruence when A/f € K. Owing to the fact that K is closed under I and S, the
Homomorphism Theorem [21, Thm. 11.6.12] yields that the kernel

Ker(h) = {{(a,b) € Ax A:h(a) =h(b)}

of every homomorphism h: A — B with B € K is a K-congruence of A such that A/Ker(h) =
h[A], where h[A] denotes the subalgebra of B with universe h[A]. When ordered under the
inclusion relation, the set of K-congruences of A forms an algebraic lattice Conk(A) in which
meets are intersections (see, e.g., [58, Prop. 1.4.7 & Cor. 1.4.11]). Given X C A x A, we
denote the least congruence of A containing X by Cg? (X) and the least K-congruence of A
containing X by Cgi¢(X). We will rely on the following observation.
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Proposition 2.5. A quasivariety K is a variety if and only if Con(A) = Conk(A) for every
A cK.

Proof. First, suppose that K is a variety. If A € K and 6 € Con(A), then A/0 € H(A) C K.
Therefore, Con(A) = Conk(A) for every A € K. Assume now that Con(A) = Conk(A) for
every A € K. Since K is a quasivariety, it suffices to prove that K is closed under homomorphic
images. Consider B € H(K). Then there exists a surjective homomorphism h: A — B
with A € K. Since Ker(h) € Con(A), the assumption yields Ker(h) € Conk(A). Thus,
A/Ker(h) € K. As B = A/Ker(h) and K is closed under I, it follows that B € K. X

The following gives a necessary and sufficient condition for a homomorphism to factor
through a quotient (see, e.g., [59, p. 62]).

Proposition 2.6. Let h: A — B be a homomorphism, § € Con(A), and f: A — A/0
the canonical surjection. Then 0 C Ker(h) if and only if there exists a homomorphism

g: AJ0 — B such that go f = h.

A", B

//>‘(
! g

A/f

An algebra A is a subdirect product of a family {B; : i € I} when A < [[,.; B; and
for every i € I the projection map p;: A — B; is surjective. Similarly, an embedding
h: A — [],c; Bi is called subdirect when h[A] < [[,c; B is a subdirect product. The next
result simplifies the task of constructing subdirect embeddings (see, e.g., [21, Lem. 11.8.2]).

Proposition 2.7. Let A be an algebra and X C Con(A). Then the map

h: A/()X =[] A/6

feX

defined by the rule h(a/(X) = (a/0 : 0 € X) is a subdirect embedding.
Notably, every congruence can be viewed as a subdirect product.

Proposition 2.8. Let K be a quasivariety and A € K. FEvery congruence 6 of A is the
universe of an algebra 0* € K such that 0* < A x A is a subdirect product.

Proof. The fact that 6 is the universe of a subalgebra 6* of A x A is an immediate consequence
of the definition of a congruence of A. As A € K and K is closed under subalgebras and
direct products (because it is a quasivariety), we obtain 8* € K. To conclude that 0* < Ax A
is a subdirect product, it suffices to show that the projection maps pi,ps: 0% — A are
surjective. Consider a € A. As 0 is a reflexive relation on A, we have (a, a) € 6. Consequently,

p1(<a, a)) :p2(<a, CL>) = a. X

Let K be a quasivariety. An algebra A € K is said to be subdirectly irreducible relative
to K when for every subdirect embedding h: A — [[,.; B; with {B; : i € I} C K there
exists ¢ € I such that p; o h: A — B, is an isomorphism. In case this happens whenever
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the index set [ is finite, we say that A is finitely subdirectly irreducible relative to K.?> The
classes of algebras that are subdirectly irreducible relatively to K and finitely subdirectly
irreducible relative to K will be denoted by Kig and Ky, respectively. When K is a variety,
the requirement that {B; : i € I'} is a subset of K in the above definitions can be harmlessly
dropped and we simply say that A is subdirectly irreducible or finitely subdirectly irreducible
(i.e., we drop the “relative to K”). In this case, we also write Ky and Ky, instead of Kgg and
KRFSI'

The importance of subdirect embeddings and of algebras that are subdirectly irreducible
relative to K derives from the following representation theorem (see, e.g., [58, Thm. 3.1.1]).

Subdirect Decomposition Theorem 2.9. Let K be a quasivariety. For every A € K there
exists a subdirect embedding f: A — []..; B; with {B; :i € 1} C Kgg.

iel
For instance, an Abelian group is subdirectly irreducible precisely when it is either cyclic
of prime-power order or quasicyclic (see, e.g., [11, Thm. 3.29]). Therefore, every Abelian
group can be represented as a subdirect product of Abelian groups of this form.
Notably, algebras that are (finitely) subdirectly irreducible relative to K can be recognized
by looking at the structure of their lattices of K-congruences. More precisely, we recall that
an element a of a lattice A is said to be:

(i) completely meet irreducible when a € X for every X C A such that a = A X;
(ii) meet irreducible when a € X for every finite X C A such that a = A X.

Notice that every completely meet irreducible element is meet irreducible and that the
maximum of a lattice is never meet irreducible because it coincides with A 0. Given a
quasivariety K and A € K, let

Irrg’(A) = the set of completely meet irreducible elements of Conk(A);

Irrg(A) = the set of meet irreducible elements of Conk(A).

Furthermore, we denote the identity relation on A by id4. The following is a consequence of
[58, Cor. 1.4.8] and the Correspondence Theorem [21, Thm. I1.6.20].

Proposition 2.10. Let A be a member of a quasivariety K. For every 6 € Con(A) we have

A/ € Ky if and only if 6 € lrrg (A);
A/ € Kipsr if and only if 0 € lrrg(A).

Therefore, A € Kyg (resp. A € Kypsr) if and only if ida € Irr (A) (resp. ida € lrrg(A)).

As a consequence, a member A of a quasivariety K is relatively subdirectly irreducible
precisely when it has a least nonidentity K-congruence, called the monolith of A. When it
exists, the monolith of A is always the K-congruence of A generated by a pair of distinct
elements a,b € A, which we denote by Cgg (a, b).

2We adopt the convention that the direct product of an empty family of algebras is the trivial algebra in
the language under consideration. Consequently, we do not regard the trivial algebra as relatively (finitely)
subdirectly irreducible.
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Given two binary relations R; and Ry on a set A, we let
Ry o Ry = {{a,b) € A x A : there exists c € A s.t. (a,c) € Ry and (c,b) € Ry}.

A variety K is said to be congruence permutable when for all A € K and 6, ¢ € Con(A) we
have o p = ¢ 0o 6. A quasivariety K is said to be relatively congruence distributive when
Conk(A) is a distributive lattice for every A € K. If K is a variety, we simply say that K is
congruence distributive. Notably, every variety whose members have a group (resp. lattice)
structure is congruence permutable (resp. distributive) (see, e.g., [21, p. 79]). A variety that
is both congruence distributive and congruence permutable is called arithmetical.

Remark 2.11. Contrarily to the case of congruence distributivity, congruence permutability is
usually understood as a property of varieties only (as opposed to arbitrary quasivarieties).
The reason is that an algebra is congruence permutable if and only if 6 o ¢ is the join of 4
and ¢ in Con(A) for all 6, ¢ € Con(A). However, the sole quasivarieties K such that 6 o ¢ is
the join of @ and ¢ in Conk(A) for all A € K and 6, ¢ € Conk(A) are those that are varieties
(see [28]). X

The following is a generalization of Jonsson’s Theorem to the setting of finitely subdirectly
irreducible algebras, which can be obtained as a straightforward consequence of [40, Thm. 1.7].

Jbénsson’s Theorem 2.12. Let K be a class of algebras such that V(K) is congruence
distributive. Then V(K)gs C HSP, (K).

We will also utilize the following analogous statement for quasivarieties (see [40, Thm. 1.5]).
Theorem 2.13. Let K be a class of algebras. Then Q(K)pps € ISP, (K).

When the class K in the above result is a finite set of finite algebras, the class operator P,
becomes superfluous because of the following observation (see, e.g., [11, Thm. 5.6(2)]).

Proposition 2.14. If K is a finite set of finite algebras, then P,(K) C I(K).

Lastly, given an algebra A and a set X C A, we denote the least subuniverse of A
containing X by Sg#(X). When Sg#(X) # 0, the subalgebra of A with universe Sg(X)
will also be denoted by Sg?(X). When X = {ay,...,a,} is finite, we write Sg*(ay, ..., an)
in place of SgA({ay,...,a,}). If A= Sg?(X) for some finite X C A, we say that A is finitely
generated. If every finitely generated subalgebra of A is finite, we call A locally finite. A class
of algebras is locally finite when its members are. We denote the class of finitely generated
members of a class of algebras K by K.

The following is an immediate consequence of [21, Thm. V.2.14].

Proposition 2.15. Let K be a universal class. Then K = U(K').

The Subdirect Decomposition Theorem 2.9 readily implies that K = Q(Kgg) for every
quasivariety K. It is well known that this result can be improved by restricting to the class
K, of finitely generated members of Kgy. As we were unable to find a reference in the
literature, we provide a proof.

Proposition 2.16. Let K be a quasivariety. Then K = Q(KS,).
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Proof. From [58, Prop. 2.1.18] it follows that K = Q(K'), where K is the class of the
finitely generated members of K. Then let A € K. By the Subdirect Decomposition
Theorem 2.9 there exists a subdirect embedding f: A — [],.; A;, where A; € Ky for every
1 € I. As f is a subdirect embedding, each A; is a homomorphic image of A and, therefore,
finitely generated. So, A; € K%, for every i € I. Since f is an embedding into a direct
product of members of K%, we obtain A € ]ISIP’(KngSI) C Q(KngSI). Thus, K& C @(Kf{%l), and
hence Q(K®) C Q(KngSI). Together with K = Q(K®), this yields K C @(K%I). Since K is a
quasivariety containing K%”SI, we conclude that K = Q(KggSI). X

Let K be a quasivariety. For every pair of algebras A and B, 6 € Conk(A), and ¢ €
Conk(B), the relation

0 x ¢ = {{{a1,b1), {as, b)) € (A x B)?: (a1, ay) € 0 and (by, by) € ¢}

is a K-congruence of the direct product A x B. Given a pair of algebras A < B and
0 € Conk(B), we write ] 4 as a shorthand for 6N (A x A). Notice that 0] , is a K-congruence
of A. The next result is an effortless generalization to quasivarieties of [73, Thm. 1.2.20].

Theorem 2.17. A quasivariety K is relatively congruence distributive if and only if for every
subdirect product A < B x C with B,C € K and every 0 € Cong(A) there exist ¢ € Cong(B)
and n € Conk(C) such that 8 = (¢ x n)| 4.

As a consequence, we deduce the following.

Corollary 2.18. Let K be a relatively congruence distributive quasivariety, A an algebra,
and 0 € Conk(A) such that A/0 is either trivial or a member of Kgpsi. Then for every B € K
such that A < B X B is a subdirect product there exists ¢ € Cong(B) with

0 € {(¢ x B*)4,(B* X ¢)[,}.

Proof. Consider B € K such that A < B x B is a subdirect product. We have two cases:
either A/6 is trivial or it belongs to Kypg. First, suppose that A/6 is trivial. Then § = A x A.
As A C B x B by assumption, we obtain

0 =Ax A= (B*x B?)]|,.

Since B? is a K-congruence of B (because K contains all the trivial algebras in the appropriate
language), we obtain B% € Conk(B). Hence, we are done taking ¢ = B.

Next we consider the case where A/ € Kypg. As A < B X B is a subdirect product and
K is relatively congruence distributive by assumption, we can apply Theorem 2.17, obtaining
some ¢y, ¢ € Cong(B) such that 6 = (¢1 X ¢2)] 4. Observe that ¢ X ¢ = (¢ x B?)N(B?* X ).
Therefore,

0= (¢1 x d2) 4= ((¢1 x B) N (B> X ¢2)) 14 = (61 x B*)[4 N (B* X $a)[ 5. (4)

Observe that ¢; x B2 B? x ¢y € Cong(B x B) because ¢1, ¢ € Cong(B). Together with
A < B x B, this yields

(p1 x B[4, (B* x ¢) 4 € Cong(A). (5)
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Lastly, recall that A/0 € Kgpy by assumption. Then 6 € lrr(A) by Proposition 2.10.
Therefore, from (4) and (5) it follows that 8 € {(¢1 x B*)[ 4, (B? X ¢2)[4}. Since ¢1, ¢y €
Conk(B), we are done. X

Let K be a class of algebras and X a nonempty set of variables. The set of all terms built
over variables in X can be made into an algebra T'(X) called the term algebra over X. The
binary relation 0k on T'(X) defined by (t,s) € 0k if and only if K F t = s is a congruence
of T'(X). We call the quotient Fx(X) = T(X)/0k the K-free algebra over X. Free algebras
have the following universal mapping property: for every map f: X — A with A € K there
exists a unique homomorphism h: Fx(X) — A such that h(z/0k) = f(x) for every x € X.
To simplify the notation, we will often denote an element ¢/60x of Fx(X) simply by t. The
following states that quasivarieties contain all free algebras (see, e.g., [21, Thm. 11.10.12]).

Theorem 2.19. Let K be a quasivariety and X a nonempty set. Then Fx(X) € K.

A member A of quasivariety K is called finitely presented when there exist a finite set of
variables X and a finite Y C T(X) x T(X) such that A = T(X)/ng(x)(Y).

We call an algebra in a language £ an £-algebra. When £ and £’ are two languages
such that £ C £’ we say that £’ is an expansion of £. If £’ is an expansion of £, then
for every &’-algebra A, we can consider its &£ -reduct A[, obtained from A by forgetting
the interpretations of all function symbols that are not in &£. Given a class K of £’-algebras,
we denote the class of the £-reducts of members of K by K[, and we call the members of
S(KT¢) the £-subreducts of K. For instance, the monoid subreducts of Abelian groups are
precisely the cancellative commutative monoids (see, e.g., [84, pp. 39-40]). We will often
denote the language of a given class of algebras K by £k, and we will refer to the terms of
Lk simply as the terms of K.

Particular cases of language expansions are those obtained by adding to the language
names for the elements of a given algebra. More precisely, given an £-algebra A, we consider
the language £ 4 obtained by adding to £ a set of new constants {¢, : a € A} that is in
bijection with the elements of A. Given a function h: A — B between the universes of a pair
of £-algebras A and B, we denote by By the £ 4-algebra whose £-reduct is B and in
which each constant ¢, is interpreted as h(a). In particular, we denote by A4 the expansion
of A to an & 4-algebra induced by the identity map on A. We define the diagram diag(A)
of an &-algebra A to be the set of all variable-free £ 4-formulas that are equations and
negated equations valid in A 4. The following lemma connects the validity of diagrams with
the existence of embeddings (see, e.g., [35, Prop. 2.1.8]).

Diagram Lemma 2.20. Let A and B be £-algebras and h: A — B a function. Then
h: A — B is an embedding if and only if Bya) F diag(A).

3. IMPLICIT OPERATIONS

An n-ary partial function on a set X is a function f: Y — X for some Y C X™. In this
case, the set Y will be called the domain of f and will be denoted by dom(f). This notion
can be extended to classes of algebras as follows. An n-ary partial function on a class of
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algebras K is a sequence (f4 : A € K), where f4 is an n-ary partial function on A for each
A € K. By a partial function on K we mean an n-ary partial function on K for some n € N.
When f is a partial function on K and A € K, we denote the A-component of f by f4.

Example 3.1 (Monoids). The operation of “taking inverses” can be viewed as a partial
function on the variety of monoids Mon. More precisely, recall that the inverse of an element
a of a monoid A = (A;-,1) is unique when it exists, in which case it will be denoted by a~*'.
Then let f4 be the unary partial function on A with domain

dom(f#) = {a € A : a has an inverse in A},

defined for each a € dom(f4) as f4(a) = a=*. The sequence (f4 : A € Mon) is a unary
partial function on Mon. X

Definition 3.2. A formula ¢(xy,...,x,,y) with n > 1 in the language of a class of algebras
K is said to be functional in K when for all A € K and a4, ...,a, € A there exists at most
one b € A such that AF p(ay,...,a,,b). When K= {A}, we often say that ¢ is functional
in A.

In other words, ¢ is functional in a class of algebras K when
KE (p(z1,. .., 20, y) T o1, ..oy T, 2)) > Y = 2.
In this case, ¢ induces an n-ary partial function 4 on each A € K with domain
dom(p?) = {{ay,...,a,) € A" : there exists b € A such that A E ¢(ay, ..., a,,b)},

defined for all (ai,...,a,) € dom(¢?) as p4(ai,...,a,) = b, where b is the unique element
of A such that A F ¢(ay,...,a,,b). Consequently,

oK = (A cK)
is an n-ary partial function on K.

Definition 3.3. A partial function f on a class of algebras K is said to be
(i) defined by a formula ¢ when ¢ is functional in K and f = ¢X;
(ii) #mplicit when it is defined by some formula.

We remark that the arity of implicit partial functions is always positive because the
definition of a functional formula ¢ = (21, ..., x,,y) requires n to be positive.

Example 3.4 (Monoids). We will prove that the partial function of “taking inverses” in
monoids introduced in Example 3.1 is defined by the formula

p(z,y)=(r-y=1)N(y -z=1).
First, observe that for each monoid A and a,b € A we have

AFp(a,b) <= a-b=1=b-a < b=a .

As a consequence, for all a,b,c € A such that A F ¢(a,b) M(a,c) we have b = a! = ¢,

whence ¢ is functional in Mon. Together with the above display, this shows that ¢ defines
the partial function of “taking inverses” in monoids which, therefore, is implicit. X
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Definition 3.5. An n-ary partial function f on a class of algebras K is said to be

(i) an operation of K when for each homomorphism h: A — B with A, B € K and
{a,...,a,) € dom(fA) we have (h(a;),...,h(a,)) € dom(fB) and

h(fA(ar,. .. a,)) = fB(h(ar),. .., hay));

(ii) an smplicit operation of K when it is both implicit and an operation of K.

We denote the class of implicit operations of K by imp(K). When K = { A}, we often write
imp(A) instead of imp(K).

Partial functions on a class K of algebras are defined as sequences (f4 : A € K) of partial
functions indexed by K. Consequently, when K is a proper class, so is each of the partial
functions on K. Nevertheless, since implicit partial functions can be identified with their
defining formulas, we will always treat imp(K) as a set.

Example 3.6 (Monoids). We will prove the following.

Theorem 3.7. Tuking inverses is a unary implicit operation of the variety of monoids which,
moreover, can be defined by the conjunction of equations

p=(@-y=1)Ny -z~1).

Proof. Recall from Example 3.4 that the partial function f on the variety of monoids of
“taking inverses” is implicit and defined by ¢. We will show that f is also an operation.
To this end, consider a homomorphism h: A — B of monoids and a € dom(f4). Then
fA(a) = a~'. Since monoid homomorphisms preserve inverses, we obtain

h(f*(a)) = h(a™") = h(a)™".

Consequently, h(a) has an inverse, whence h(a) € dom(fZ) and fB(h(a)) = h(a)~'. Together
with the above display, this yields h(f4(a)) = fB(h(a)). X

Example 3.8 (Term functions). Let K be a class of algebras. Every term of K can be viewed
as an implicit operation, as we proceed to illustrate. Let t(zq,...,z,) be a term. For each
A € K, evaluating ¢ on tuples of elements of A induces a function t4: A" — A. Then the
sequence tK = (t4 : A € K) is an n-ary implicit operation of K defined by the equation
t(xy,...,2,) = y. We call t¥ a term function of K. These implicit operations are always
“total”, in the sense that each ¢ is a total function on A. X

In elementary classes, implicit operations admit the following description.

Theorem 3.9. Let f be a partial function on an elementary class K. Then f is an implicit
operation of K if and only if it is defined by an existential positive formula.

Proof. To prove the implication from left to right, suppose that f is an implicit operation
on K. Then there exists a formula ¢(x1,...,2,,y) that defines f. We will prove that ¢
is preserved by homomorphisms in K. To this end, consider a homomorphism h: A — B
with A, B € K and a4, ...,a,,b € A such that A F p(ay,...,a,,b). As ¢ defines f, from
AE lay,. .., a,,b) it follows that (ai,...,a,) € dom(f4) and f4(ai,...,a,) = b. Together
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with the assumption that f is an operation of K, this yields (h(a1),...,h(a,)) € dom(fB)
and

h(b) = h(fA(as, ..., an)) = fB(W(ar),. .., h(an)).

Since ¢ defines f, we conclude that B F ¢(h(ay),...,h(a,), h(b)). Hence, ¢ is preserved by
homomorphisms in K. Therefore, we can apply Theorem 1.1(i), obtaining that ¢ is equivalent
to an existential positive formula ¢ in K. As ¢ defines f, so does ¥. Thus, we conclude that
f is defined by an existential positive formula.

Then we proceed to prove the implication from right to left. Suppose that f is defined
by an existential positive formula ¢(z1,...,x,,y). To conclude that f is an implicit op-
eration of K, it suffices to show that it is an operation of K. Consider a homomorphism
h: A — B with A,B €K and ay,...,a, € A such that (ay,...,a,) € dom(f4). As ¢ de-
fines f, we have A F ¢(ai,...,a,, fA(a1,...,a,)). Since ¢ is an existential positive formula,
we can apply Theorem 1.1(i), obtaining B E ¢(h(a1), ..., h(a,), h(fA(ai,...,a,))). There-
fore, (h(a1),...,h(a,)) € dom(fB) and h(fA(a,...,a,)) = fB(h(ay),...,h(a,)) because ¢

defines f. Hence, we conclude that f is an operation of K. X

Let f, f1,..., fn be m-ary partial functions on a set X. We write f = fiU---U f, to
indicate that f is the union of fi,..., f, when they are viewed as subsets of X™ x X. This
condition is equivalent to the requirements that dom(f) = dom(f;) U---Udom(f,) and that
fi(x) = f(z) for all i and = € dom(f;). As a consequence of Theorem 3.9, we obtain the
following.

Corollary 3.10. Let f be an implicit operation of an elementary class K. Then there exist
some implicit operations fi1,..., f, of K defined by pp formulas such that for each A € K,

fA=u-uft

Proof. As K is an elementary class, we can apply Theorem 3.9, obtaining that f is defined
by an existential positive formula . We may assume that ¢ = ¢ LI --- U ¢, for some pp
formulas @1, ..., @,. Since ¢ defines f, it is functional in K. Together with ¢ = @ U--- U ¢,
this implies that each ¢; is functional in K and, therefore, defines a partial function f; on K.
As o; is a pp formula, from Theorem 3.9 it follows that f; is an implicit operation of K. Now,
recall that ¢ = ¢ U --- U @, defines f and ¢; defines f; for each ¢ < n. Thus, we conclude
that fA = fAU.--U fA for each A € K. X

In view of Corollary 3.10, implicit operations of elementary classes are obtained by glu-
ing together implicit operations defined by pp formulas. This is the reason why the most
fundamental implicit operations in mathematics are defined by pp formulas (as opposed to
arbitrary existential positive formulas), as shown by the forthcoming examples. We denote
by imp,, (K) the set of implicit operations of a given class K that are defined by pp formulas
and, when K = {A}, we often write imp,,(A) instead of imp,,(K).

Corollary 3.11. Let K be a class of algebras and ¢ an existential positive formula functional
in K. Then ¢ defines an implicit operation of Q(K).
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Proof. Suppose that ¢(Z,y) is an existential positive formula, where Z is a finite sequence of
variables. Since ¢ is existential positive, it is equivalent to a formula of the form

| |370:(7, v, 7),
=1

where each 1;(Z, y, ) is a finite conjunction of equations. We rely on the following observation.

Claim 3.12. The formula ¢ is functional in a class of algebras M if and only if for all
1,7 < m we have

ME (4i(Z,y,2) Ny(7 ¢, ) =y = o/,

where y' is a fresh variable and Z' a sequence of fresh variables of the same length as 7.

Proof of the Claim. The functionality of ¢ in M amounts to

ME (p(Z,y) Np(Z,y) =y =y

In turn, this amounts to

- <<|_| 37T,y 7 ) <|_|3 GRS ”))) —y=y.

The latter amounts to

<|_| 37, 2 (¢i(Z, y, 2 )”%(f,y,i))) —yry,

J=1

which is in turn equivalent to the condition displayed in the statement. X

Now, suppose that ¢ is functional in K. By Claim 3.12 we obtain that for all ¢, 5 < m

KE (Wi(Z,y,2) Ny (2,9, 2) »y=y.

As the formula in the above display is a quasiequation for all i, 7 < m, Corollary 2.3(ii)
implies that it is also valid in Q(K). Together with Claim 3.12; this guarantees that ¢ is
functional in Q(K). X

Given an n-ary partial function g and m-ary partial functions f1, ..., f, on a class K, their
composition g(fi,..., f,) is the m-ary partial function on K such that dom(g(fi,..., f.)?) is

(Vdom(f*) N {{ar, ... am) € A™: (fH(a, ... am) 1 i < n) € dom(g™)}

<m

for all A € K and

g(fr, - f)Aan, . am) = g2 (FR(ar, . am), - fA(ar, . am))
for all {ay,...,an) € dom(g(fi,..., fu)d).

Proposition 3.13. Let K be a class of algebras. Then imp(K) and imp,,,(K) are closed under
composition.
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Proof. Consider g, f1,..., fn € imp(K), where g is n-ary and each f; is m-ary. Let h =
g(f1,..., fn) be their composition, which is a partial m-ary function on K. To show that A is
an operation of K, consider a homomorphism k: A — B with A, B € K and (ay,...,a,) €
dom(h?4). It follows from the definition of h that (ay,...,a,) € dom(f?) for all i and
(fA(ar,...,am), ..., fAa1,...,an)) € dom(g4). As g, fi,..., [, are operations of K, we
have that

(k(a1),...,k(ay)) € dom(fP)

for all 7 and

(fE(K(ar), - k(am)), - f (B(ar), .. k(am)))
= (k(fAay, ... am)), ..
Then the definition of dom(h®B) implies (k(ay), ..., k(
that g, f1,..., f, are operations of K yields
E(h™(ay, ..., an)) = k(g2 (fMay, ... am), ..., fAay, ... an)))
= B s i) KA 0, )
= BB (@), kan)), - B k() - Kan)
= hP(k(ar), ..., k(an)).

K
am

(fi(ar,...,ap))) € dom(g?).
)) € dom(hB). Using again the fact

Thus, h is an operation of K. We now prove that h is defined by a formula. Since g, fi1,..., f, €
imp(K), there exist functional formulas ¥, 1, ..., p, that define g, f1,..., f,, respectively.
Therefore, for all A € K, ay,...,a,,b,b1,...,b,,c € A, and i < n we have

{ar,...,an) € dom(f?) and fA(ay,...,am) =b <= AE @i(ar,...,am,b) (6)

and
(by,...,b,) € dom(g?) and g*(by,...,b,) =c < AEY(b,... by c). (7)
Let

X(T1y oo T, y) = 321,00, 2 (zﬂ(zh ey ZnyY) T |_|g0i(x1, . ,xm,zi)> . (8)

i=1
We show that y defines h. Consider A € K and ay,...,a,,¢c € A. By (8) we have
AF x(ay,...,an,c) if and only if there exist by,...,b, € A such that A F p;(ay,...,amn,b;)
for all i <n and AF (by,...,b,,¢). By (6) and (7), the latter condition is equivalent to

{ar,...,an) € dom(f?) and fA(ay,...,a,) = b; for every i < n, and
(by,...,b,) € dom(g?) and g4(by,...,b,) = c.

In turn, this amounts to (aj, ..., a,) € dom(h?4) and h(ay,...,a,) = c by the definition of
h. Therefore, x defines h, and hence h € imp(K).

Suppose now that in addition g, fi,..., f, € imp,,(K). We can then assume that the
formulas ¥, 1, ..., @, that define g, f1,..., f,, are pp formulas. Let x be defined as in (8).
Since 1 and each ¢; are pp formulas, they are of the form 307’ and Ju,p}, where v and
u; are finite sequences of variables and ¢’ and ¢ are finite conjunctions of equations. It is
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straightforward to verify that x is equivalent to the formula obtained by pulling out the
existential quantifiers 3¢ and 3u; from the conjunction in (8), and hence x is equivalent to a
pp formula. Thus, h is defined by a pp formula, and so h € imppp(K). X

Example 3.14 (Isbell's operations). A fundamental example of implicit operations of the
variety of monoids is due to Isbell [71]>. More precisely, for each n > 1 let
Un(Z1, ooy Zny Wiy ooy Wiy Ty ey Tt 1, Y)
be the conjunction of the following equations in the language of monoids:
y=ra
T1 R Wiy
X9i%i = XToip12i01 fori=1,...,n—1
WiTi41 R Wip1Toi41) for i =1,...,n—1
TonZn = Ton+1
WnTon+1 = Y-

Then let o(z,y) = z = y and for each n > 1,

Qpn(l’la cee 7$2n+1ay) = EI'217 ceey Zn, W1, .. 7wnwn<zla vy B, W1,y .o, Wy, X1y e e 7x2n+1ay)'

We refer to ¢, as to the n-th Isbell’s formula. Notice that Isbell’s formulas are pp formulas.
It follows from [23, Lem. 4.4] that each Isbell’s formula is functional in the variety of monoids.
Whence, from Corollary 3.11 we deduce the following.

Theorem 3.15. Every Isbell’s formula defines an implicit operation of the variety of monoids.

Isbell’s formulas and the implicit operations they define, which we term Isbell’s operations,
will play a prominent role in the next sections (see Example 4.8, Isbell’s Zigzag Theorem 4.9,
and Proposition 14.4). X

Example 3.16 (Reduced commutative rings). Throughout this work, rings will be assumed
to possess an identity element. Given an element a of a ring (A4;+,-,—,0, 1), we denote its
multiplicative inverse (when it exists) by a™'. By a field we understand a commutative ring
A with 0 # 1 such that a™! exists for each a € A — {0}. The class of fields will be denoted
by Field.

A commutative ring A is said to be reduced when for each a € A,
a-a =0 implies a =0

(see, e.g., [48]). The class of reduced commutative rings forms a quasivariety RCRing axioma-
tized relative to commutative rings by the quasiequation - x = 0 — = = 0. We remark that
this quasivariety is proper because the ring of integers Z is reduced, while its quotient Z, is
not. We rely on the next characterization of reduced commutative rings.

3While these operations are traditionally considered in the variety of semigroups, it is straightforward to
verify that all their properties relevant to our discussion continue to hold in the variety of monoids.
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Theorem 3.17. The class of reduced commutative rings coincides with the quasivariety
generated by all fields.

Proof. We will prove that
RCRing = ISP(Field) = ISPP,(Field) = Q(Field).

The first equality above holds because a commutative ring is reduced if and only if it embeds
into a direct product of fields (see, e.g., [91, Prop. 3.1]), the second because Field is an
elementary class and, therefore, closed under P,, and the third follows from Theorem 2.2. X

Let A be a field and a € A. The weak inverse of a in A is the element

{a if a # 0; (9)

W@ =10 azo

We will prove the following.

Theorem 3.18. There exists a unary implicit operation [ of the quasivariety of reduced
commutative rings such that f4 is total and f2(a) = wi(a) for all fields A and a € A.
Moreover, f can be defined by the conjunction of equations

p=("y )N (2y" =y).
Proof. We will prove that for every field A and a,b € A we have

AF p(a,b) < b=wi(a). (10)

The implication from right to left is straightforward. To prove the reverse implication, suppose
that A F ¢(a,b), i.e.,

a’h=a and ab® =b.
We have two cases: either a # 0 or a = 0. First, suppose that a # 0. Then wi(a) = a
Therefore, from a?b = a it follows that

-1

b=a2a*b=a2a=a"",

where a2 abbreviates (a7')%2. Whence b = a~! = wi(a). Then we consider the case where

a = 0. In this case, wi(a) = 0. From a = 0 and ab® = b it follows that b = 0 = wi(a). This
establishes (10). Consequently, ¢ is functional in Field.

Recall from Theorem 3.17 that Q(Field) = RCRing. As ¢ is a pp formula and is functional
in Field, we can apply Corollary 3.11, obtaining that ¢ defines an implicit operation f of
RCRing. Lastly, (10) ensures that f4(a) = wi(a) for every field A and a € A. X

Example 3.19 (Distributive lattices). Given a lattice A and b,c € A, we let
bycJ={a€ A:b<a<c}

Moreover, given a,d € A, we say that d is a complement of a relative to the interval [b, c|
when

aNd=b and aVd=c.



THE THEORY OF IMPLICIT OPERATIONS 21

In distributive lattices, relative complements are unique when they exist [16, Cor. IX.1].
Consequently, with every distributive lattice A we can associate a ternary partial function
f4 on A with domain

dom(f4) = {{a,b,c) € A : a has a complement relative to [a AbDAc,a VbV ] in A},
defined for each (a,b,c) € dom(f4) as
f%(a,b,c) = the complement of a relative to [a AbA c,a VbV ] in A.

Let DL be the variety of distributive lattices. Then the sequence f = (f4: A € DL) is a
partial function on DL, which captures the idea of “taking relative complements”.

This construction acquires special interest in the case of bounded distributive lattices. For
let A= (A;A,V,0,1) be a bounded distributive lattice and a,b € A. Then b is said to be a
complement of a when

aNb=0 and aVb=1

or, equivalently, when b is a complement of a relative to [0,1] = A. With every bounded
distributive lattice A we can associate a unary partial function f4 on A with domain

dom(f4) = {a € A : a has a complement in A},
defined for each a € dom(f4) as
f“(a) = the complement of a in A.

Let bDL be the variety of bounded distributive lattices. Then the sequence f = (f4: A €
bDL) is a partial function on bDL, which captures the idea of “taking complements”.

Theorem 3.20. The following conditions hold:

(i) taking relative complements is a ternary implicit operation of the variety of distributive
lattices which, moreover, can be defined by the conjunction of equations

p=(r1ANy=zyANxasAx3) N (x1 Vy =z VasVars);

(i) taking complements is a unary implicit operation of the variety of bounded distributive
lattices which, moreover, can be defined by the conjunction of equations

v=(xANy=0)N(zVy=1l).

Proof. (i): Observe that the partial function f on DL of “taking relative complements” can
be defined by the conjunction of equations
o(x1, x9,3,y) = (r1 Ay axy Azg Axs) N (xy Vy = a1 VI Vrs).

Therefore, from Theorem 3.9 it follows that f is an implicit operation of DL.
(ii): Analogous to the proof of (i). X

Example 3.21 (Absolute value). Let ¢ be the pp formula
90(‘,1;7 y) = Elzla 22, 23, Z4<<y ~ Z% + Zg + Zg + Zi) Ml (Z‘2 ~ y2))

in the language of rings. By Lagrange’s four squares theorem any nonnegative integer can
be written as the sum of four integer squares (see, e.g., [3, Thm. 11-3]). Therefore, for all



22 LUCA CARAI, MIRTIAM KURTZHALS, AND TOMMASO MORASCHINI

a,b € Z we have that Z & ¢(a,b) if and only if b > 0 and a® = b*, which happens exactly
when b = |a|. In particular, ¢ is functional in Z. Then Corollary 3.11 implies that ¢ defines
an implicit operation f of the quasivariety K of rings generated by Z such that f% is the
absolute value function.

While f is an implicit operation defined by a pp formula, it is interesting to observe that f
cannot be defined by a conjunction of equations. Indeed, suppose, on the contrary, that f
is defined on K by a conjunction of equations . In the variety of commutative rings, each
equation in variables z and y is equivalent to an equation of the form p(z,y) = 0, where
p(z,y) is a polynomial with integer coefficients. So, we can assume that

V= ]pilz,y) =0,
=1

where each p;(z,y) is a polynomial with integer coefficients. Since 1 defines the absolute
value function on Z, we have that Z F 1(a,a) for every nonnegative integer a. Thus, for
every i the polynomial p;(z,x) in a single variable x vanishes on every nonnegative integer.
We recall that the only polynomial in a single variable with rational coefficients that has
infinitely many roots is the zero polynomial (see, e.g., [4, Prop. 12.2.20]). Then p;(z,x) is
the zero polynomial, and hence p;(—1,—1) = 0 for every i. We conclude that Z F (-1, —1),
which contradicts that fZ(—1) = |—1| = 1. Therefore, f cannot be defined by a conjunction
of equations.

4. EXISTENTIAL ELIMINATION

The idea of interpolating a given family of functions by simpler ones plays a fundamental
role in mathematics. For instance, a well-known theorem of Lagrange states that every finite
set of pairs of real numbers can be interpolated by a polynomial with real coefficients (see,
e.g., [101, Thm. 6.1]). In this section, we will establish a general interpolation theorem for
the implicit operations of a quasivariety K.

More precisely, recall from Corollary 3.10 that every implicit operation of K can be obtained
by gluing together finitely many implicit operations defined by pp formulas. The main result
of this section states that, if K has the amalgamation property, the study of its implicit
operations can be further simplified by observing that each implicit operation defined by a
pp formula is interpolated by one defined by a conjunction of equations (Theorem 4.3). We
term this phenomenon ezxistential elimination because conjunctions of equations are obtained
by removing existential quantifiers from pp formulas.

As we mentioned, the reason for existential elimination is the amalgamation property,
whose definition we proceed to recall.

Definition 4.1. A class of algebras K is said to have the amalgamation property when for
every pair of embeddings h;: A — B and hy: A — C with A, B, C € K there exists a pair
of embeddings g;: B — D and go: C — D with D € K such that g; o hy = g5 0 hs.
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Furthermore, we will rely on the following notion of interpolation.

Definition 4.2. Let F U {g} be a family of n-ary implicit operations of a class of algebras
K. We say that g is interpolated by F when for all A € K and {(ay, ..., a,) € dom(g4) there
exists f € F such that

<a17 s 7a7Z> € dom(fA) and fA(ah s 7an) = gA(a’h s 7an)'
When F = {f}, we often say that g is interpolated by f.

Given a class of algebras K, we denote by imp,,(K) the set of implicit operations of K
defined by a conjunction of equations. When K = { A}, we often write imp,,(A) instead of
impeq(K).4 The aim of this section is to establish the following interpolation result.

Theorem 4.3. The following conditions hold for a quasivariety K with the amalgamation
property:

(i) every member of imp,,(K) can be interpolated by some member of imp,,(K);

(ii) every member of imp(K) can be interpolated by a finite subset of imp,,(K).

As the variety of monoids lacks the amalgamation property (see, e.g., [76, p. 100]°),
it falls outside the scope of Theorem 4.3. This is reflected by the fact that this variety
possesses implicit operations defined by pp formulas that cannot be interpolated by any
implicit operation defined by a conjunction of equations, an example being every n-th Isbell’s
operation for n > 1 (see Example 4.15). On the other hand, the variety of distributive
lattices has the amalgamation property (see, e.g., [7, Thm. VII.8.4]) and, therefore, each
of its implicit operations defined by pp formulas can be interpolated by one defined by a
conjunction of equations.

The rest of this section is devoted to the proof of Theorem 4.3. The first ingredient of the
proof is the following concept, introduced in [71] (see also [6]).

Definition 4.4. Let K be a class of algebras and A < B a pair of £k-algebras. The dominion
of A in B relative to K is the set

dk(A, B) = {b € B : for each pair of homomorphisms g,h: B — C with C € K,
i g1, = hiy, then g(b) = h(b)}.

4A1th0ugh we will not rely on this fact, we will show in Example 4.16 that impeq(K) need not be closed
under composition (cf. Proposition 3.13).

9As observed in [76, p. 108], the failure of the amalgamation property for the variety of monoids can be
seen as a consequence of the corresponding result for the variety of semigroups proved in [75] (see also [37,
Exa. 1]).
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It is straightforward to verify that dg(A, B) is the universe of a subalgebra of B that
contains A. It follows immediately from its definition that dgx(A, B) is the intersection of
all the equalizers of pairs of homomorphisms ¢g,h: B — C with C € K that agree on A,
where we recall that the equalizer of g and h is {b € B : g(b) = h(b)}. Moreover, when K is
closed under direct products, it turns out that dg(A, B) is itself the equalizer of a pair of
homomorphisms from B into an algebra of K that agree on A.

We rely on the following fact.

Proposition 4.5. Let K be a class of algebras, A < B € K, and A’ < B € K. Ifg: B — B’
is a homomorphism with g[A] C A’, then g[dk(A, B)] C dx(A’, B’).

Proof. Let b € g[dk(A, B)]. Then there exists a € dg(A, B) with g(a) = b. Suppose that
hi,he: B" — C are homomorphisms with C' € K and hy [, = hal 4. Since g[A] C A’, the
homomorphisms hy 0 g, hg 0 g: B — C satisfy (hy 0 g)[4 = (haog)[4. Asa € dk(A, B), it
follows that hi(g(a)) = ha(g(a)). Therefore, b = g(a) € d(A’, B’), as desired. X

As an immediate consequence of the previous proposition we obtain the following result,
where, for A < B and 6 € Con(B), we denote the subalgebra of B/f with universe
{a/0:a € A} by A/6.

Corollary 4.6. The following conditions hold for every class K of algebras and A < B € K.
(i) fA<S A <B' €Kand B< B, thendk(A,B) Cdg(A', B').
(ii) If 0 € Con(B) and B/6 € K, then b € dc(A, B) implies b/0 € dx(A/6, B/0).

Proof. Both statements follow from Proposition 4.5: for (i) let g: B — B’ be the inclusion
map, and for (ii) let g: B — B/0 be the canonical surjection. X

In general, the task of describing dominions for concrete classes of algebras may be hard.
However, in some cases a tangible description is within reach.

Example 4.7 (Distributive lattices). In the variety DL of distributive lattices dominions can
be described as follows (see [105, Thm. 2.4]). For each A < B € DL the dominion dp, (A, B)
is the least subset C' of B containing A and closed under meets and joins such that for all
a,b,ce C and d € B,

if d is the complement of a relative to [b, ¢], then d € C. X

Example 4.8 (Monoids). For each n € N let @, (21, ..., Zon11,y) be the n-th Isbell’s formula
defined in Example 3.14. Dominions in the varieties of monoids and commutative monoids
are described by the following classic result (see [68, Thm. 1.2]).

Isbell’s Zigzag Theorem 4.9. Let K be the variety of monoids or the variety of commutative
monoids. For each A < B €K and b € B we have

bedk(A,B) < BEFE p,(ai,...,a0,41,b) for somen € N and aq,...,a,11 € A.

This theorem was originally stated for the variety of semigroups in [71]. Similar descriptions
of dominions have been obtained for the varieties of commutative semigroups, rings, and
commutative rings (see [69, 72]). X
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We will make use of the following description of dominions in terms of implicit operations
(see [6, Thm. 1] and [23, Thm. 3.2]).

Theorem 4.10. Let K be an elementary class. For every A < B € K we have

dk(A, B) = {b € B : there exist f € imp,,(K) and (ai,...,a,) € dom(f%) N A"
such that fB(ay, ..., a,) = b}.

As shown in the next result, the amalgamation property simplifies the task of describing
dominions.

Proposition 4.11. Let K be a class of algebras closed under finite direct products with the
amalgamation property and A < B < C with B,C € K. Then

dk(A, B) = de(A,C) N B.

Proof. We first prove the inclusion from left to right. As B < C, from Corollary 4.6(i)
it follows that dx(A, B) C dk(A,C). Since dx(A, B) C B by definition, we obtain that
dk(A,B) Cdk(A,C)N B.

Next we prove the inclusion from right to left. Suppose, with a view to contradiction, that
this inclusion fails. Then there exists b € B such that

b€ de(A,C) and b¢ dk(A,B). (11)

As b € B, the right hand side of the above display implies that there exists a pair of
homomorphisms fi, fo: B — D with D € K such that

fila= fala and fi(b) # fo(b). (12)

We may assume that f; and f, are embeddings. Otherwise, we replace each f; by the
embedding fF: B — D x B defined as f(c) = (fi(c),c) for every ¢ € B. Observe that
D x B € K because B, D € K and K is closed under finite direct products by assumption.
Furthermore, from (12) and the definition of f; and fJ it follows that f;[, = fi[4 and
fi(b) # f5(b). Consequently, from now on we will assume that f; and f, are embeddings.

Recall from the assumptions that B < C. Then let i: B — C be the inclusion map,
which is always an embedding. Asi: B — C and f;: B — D are a pair of embeddings with
B,C,D € K, we can apply the assumption that K has the amalgamation property, obtaining
a pair of embeddings g;: C — E and go: D — E with E € K such that

g1oi=gz0 fi. (13)
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Since 17, g1, g2, and f; are embeddings, so are the compositions ¢g; oi1: B — E and ¢, o
fa: B — E. Together with E € K, this allows us to apply the amalgamation property of K,
obtaining a pair of embeddings hy, hy: E — F with F' € K such that

hiogiot=hyogyo fo. (14)

cC 25 E

D——FE
As i is the inclusion map from B to C, from (14) and (13) it follows that for each
ce BCC(C,
hyogi(c) =hgogyo fo(c) and hyo gi(c) = hyogeo fi(c). (15)
By the left hand side of (12) we have fi(a) = fo(a) for every a € A. Together with (15) and
A C B, this yields that for every a € A,

hiogi(a) =hgogyo fala) =hgogoo fi(a) = hsogi(a).
Hence, (h10g1)[4 = (ha0og1)[ 4. On the other hand, recall that f;(b) # f2(b) by the right hand
side of (12). Since hy 0 go: C — F' is an embedding (because so are hy and ¢3), we obtain
haogao f1(b) # haogeo fo(b). Together with b € B and (15), this implies hy 0g1(b) # hao gy (D).
Since hy 0 g1: C — F'is a homomorphism with F' € K such that (hy o ¢1)[4 = (ha o ¢1)[ 4,
we conclude that b ¢ dg(A, C), a contradiction with the left hand side of (11). X

The second ingredient of the proof of Theorem 4.3 is the following construction, which
associates an algebra with every pp formula. We denote the set of variables occurring in a
formula ¢ by Var(y). For instance, if ¢ = Jz(x + y = x), then Var(yp) = {z,y}. Moreover,
we denote the term algebra with variables in Var(y) by T'(Var(y)) and let

Tl ={(t1,t2) : t1 = t5 is an equation occurring in p}.
Observe that "¢ C T'(Var(p)) x T(Var(y)).
Definition 4.12. Let K be a quasivariety. With every pp formula ¢ we associate the algebra
Ti(p) = T(Var())/0(p), where 6(p) = Cg " (7).
Recall that, when ¢ defines an implicit operation of K, we denote this operation by
P =(p?: AeK).
We rely on the next observation.

Proposition 4.13. Let o(z1,...,2,,y) be a pp formula that defines an implicit operation of
a quasivariety K. Then the following conditions hold:

(i) Tk () is a finitely presented member of K such that
(@1/0(0), -, 20 /0(p)) € dom (™) and T (21/6(p), ..., 2./0(0)) = y/6(p);
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(ii) for all A € K and {(ay, ..., a,) € dom(p?) there exists a homomorphism h: Tx(p) — A
such that

h(x:/0(p)) = a; for each i <n and h(y/0(p)) = ¢?(a1,. .., an).

Proof. Since ¢ is a pp formula, it is of the form Jzy, ..., 2,9, where ¢ is a finite conjunction
of equations. Therefore,
§0:321,...,Zm|_|tiz5i, (16)
i<k
where t; and s; are terms in variables z,..., 2., Y, 21, . - -, Zm.

(i): The algebra Tk (i) is a finitely presented member of K by definition. Therefore, it only
remains to show that for each i < k,

Tk(p) Fo(x1/0(0), ..., 22 /0(),y/0(¢)).

In view of (16), it will be enough to prove
= ([Tt ) /000D 0080, 00001, 180), . 2 00
i<k

Let ¢ < k. From the definitions of "¢ and 0(¢p) it follows that (t;,s;) € "¢ C 0(yp).
Consequently,

O (@1 /0(0), ..., 0 /0(0), y/0(0), 21/0(9), . .., 2 /0(0))
= i1, Ty Yy 21, 2m) [0()
:Si(SBl,.-- %,y,zl,---»Zm)/@(Sﬁ)

ST (@1 /0(9),s - .., 2 /0(0), y/0(0), 21/0(9), - ., 2m /().

(ii): Let A € K and (ay,...,a,) € dom(p4). Then A F p(ay,...,a,, o2 (ai,...,a,)). In
view of (16), there exist by, ..., b, € A such that for each i < k,

t2ar, ..., an, 0 (a1, ..., an),b1, .. by) = sMay, ... an, @ ay, ... a,), b1, b)), (17)
Now, let g: T (Var(¢)) — A be the unique homomorphism such that
Alay,...,a,), and g(z;) = b; for each j < m
(18)
From the above display and (17) it follows that "7 C Ker(g). As A € K by assumption, we
also have Ker(g) € Conk(T'(Var(y))). Consequently,

0(p) = Cgg ¥ (T¢7) C Ker(g).

Since Tk (p) = T'(Var(y))/60(¢), we can apply Proposition 2.6 to the above display, obtaining a
homomorphism h: Tk(¢) — A defined for every t € T'(Var(p)) as h(t/0(¢)) = g(t). Together
with (18), this yields h(z;/0(p)) = a; for each i < n and h(y/0(p)) = ¢A(ay,. .., a,). X

g(z;) =a; foreachi <n, g¢g(y)=¢

We are now ready to prove Theorem 4.3.
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Proof. (i): Let f be an implicit operation of K defined by a pp formula ¢(z1,...,z,,v).
Consider the algebra

A =S (21 /0(0), ... 20 /0()).
By Proposition 4.13(i) we have

(@1/0(¢), .-, 20/0()) € dom(fTHE) N A" and [T (2, /6(p),...,2./0(¢)) = y/b(p).
Together with Theorem 4.10, this yields y/0(¢) € dk(A, Tk(v)). Now, let

B =S¢ (1/0(p),...,2a/0(0), 5/0(¢)).
As A < B < Tk(y) € K and K is a quasivariety with the amalgamation property, we can
apply Proposition 4.11 to y/6(¢) € dk(A,Tk(¢)) N B, obtaining y/0(y) € dk(A, B). By
Theorem 4.10 there exist an m-ary g € imp,,(K) and (a1, ..., a,) € dom(g®) N A™ such that
g%(as, ... am) = y/0(p).

Since g € imp,,(K), there exists a formula 3z,..., 2.0 (21, ..., Tm, ¥y, 21, . ., 2k), Where

1 is a conjunction of equations, defining g. Together with (ay,...,a,) € dom(g?) and
g8 (a1, ..., a,) = y/0(p), this guarantees the existence of by, ..., b, € B such that

BE(ar, o am y/0(2), i, be). (19)

Asay,...,a, € A, A < B, and A is generated by x1/0(p), ..., x,/0(¢) by definition, for each

i < m there exists a term t;(x1, ..., ,) such that a; = tB(2,/0(¢),...,2,/0(¢)). Similarly,

as by,...,b € B and B is generated by x1/0(¢),...,x,/0(p),y/0(¢) by definition, for each

j < k there exists a term s;(z1, ..., %y, y) such that b; = sP(21/0(0), ..., 2./0(0),y/0(¢)).
We consider the formula

vy=Yt (1, ), et (T, ), Y ST (T, e T Y,y SE(T e T, Y).

Notice that v is a conjunction of equations because so is ). Then observe that the formula
2y, (2, o Ty Y, 21, - - -, 2) 18 functional in K because it defines g. Together with
the definition of ~, this guarantees that ~ is also functional in K. Hence, v defines some
h e impeq(K) by Corollary 3.11. Therefore, to conclude the proof, it suffices to show that h
interpolates f.

First, observe that from (19) and the definitions of v and ty,...,tm, 1, ..., Sk it follows
that

BEy(@1/0(0), .-, za/0(0),y/0(p)). (20)

As 7y defines h, this yields

(@1/0(0), .., 20 /0()) € dom(h®) and 1P (21/0(¢), ..., 2u/0(¢)) = y/0(¢).

We are now ready to prove that h interpolates f. To this end, consider C € K and
C1,...,Cn,d € C such that {c1,...,c,) € dom(f€) and fC(ci,...,c,) =d. As f is defined by
the pp formula ¢(x1, ..., 2z,,y) by assumption, from Proposition 4.13(ii) it follows that there
exists a homomorphism e: Tk (¢) — C such that

e(z;/0(p)) = ¢; for each i <n and e(y/0(p)) =d.

Since B < Tk(y) and x1/0(p),...,x,/0(v),y/0(p) € B by the definition of B, the above
display still holds if we restrict e to a homomorphism e: B — C. As h is an implicit
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operation of K, it is preserved by homomorphism between members of K and, in particular,
by e. Together with (20) and the above display, this yields

(er, ... cn) = (e(21/0(9)), ..., e(xa/0(p))) € dom(RC)

and

d=e(y/0(p)) = e(h"(21/0(0), ..., 2/0(0))) = h (e(21/0(¢)),..., e(wa/0()))

= hC(Cl, c. ,Cn).

Since f€(cy,...,c,) = d, we conclude that h interpolates f.
(ii): Immediate consequence of (i) and Corollary 3.10. X

From Theorems 4.3(i) and 4.10 we deduce the following (for a similar observation, see [6,
Thm. 1%, p. 475] and [5]).

Corollary 4.14. Let K be a quasivariety with the amalgamation property. For every A <
B € K we have

dk(A, B) = {b € B : there exist f € imp,(K) and (a1,...,a,) € dom(fP)n A"
such that f2(ai,...,a,) = b}.

We close this section with two examples. The first shows that Isbell’s operations cannot
be interpolated by any implicit operation defined by a conjunction of equations in the variety
of commutative monoids, and the second shows that condition (i) of Theorem 4.3 cannot be
improved by requiring the equality imp,,(K) = imp,,(K).

Example 4.15 (Isbell's operations). For every positive n let f,, be the n-th Isbell’s operation,
viewed as an implicit operation of the variety Mon of monoids (see Example 3.14 and
Theorem 3.15). Then f,, € imp,,(Mon). We will prove that f, cannot be interpolated by
any member of imp,,(Mon). Suppose the contrary, with a view to contradiction. Then f,, is
interpolated by some g € imp,,(Mon). Consider the commutative monoids N = (N;-, 1) and

Q = (Q;-,1). Moreover, let aq,...,ap,b1,...,by,C1,...,Cont1,d be the sequence of rationals
defined as follows: for every 1 <i<nand 1 <j <2n+1,
1
ai:§:bi, Cj :12, 01:6202714-17 d=3.

Using the formula v, in Example 3.14, we have

QIZ@bn(al,...,an,bl,...,bn,cl,...,02n+1,d).

By the definition of f,, this yields (ci,...,conp1) € dom(fQ) and f2(cy, ..., cony1) = d.
As g interpolates f,, we obtain (ci,...,conq1) € dom(g?) and ¢@(cy, ..., cons1) = d. Let
o(Z1, ..., Tauy1,y) be the conjunction of equations defining g. Then Q F ¢(cy, ..., cani1,d).
As ¢ is a universal formula and ¢y, ...,c9,11,d € N, Theorem 1.1(iii) implies that N F
o(c1, ... cany1,d), and hence (cy, ..., Cony1) € dom(gV) and gN(cy, ..., cong1) = d. Let A and
B be the submonoids of N with universes A = {1}U{2m : m € N} and B = {0, 1}, respectively.
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Since ¢y, ..., ;41 € A and g € imp,,(Mon), Theorem 4.10 yields 3 = d € dwmon(A,N). Let
h,k: N — B be given by

h(m) 1 ifm=1, k(m) 1 if m is odd,
m) = m) =
0 otherwise, 0 otherwise.

It is immediate to verify that h and k are homomorphisms such that hl, = k[, and
h(3) # k(3), whence 3 ¢ duon(A,N). As this is false, we conclude that f,, cannot be
interpolated by any member of imp,,(Mon). X

Example 4.16 (Cancellative commutative monoids). An element a of a monoid A = (A;- 1)
is said to be cancellative when for all b,c € A,

(ab = ac implies b = ¢) and (ba = ca implies b = ¢).

When all the elements of A are cancellative, we say that A is cancellative (see, e.g., [38, 39]).
The class of cancellative commutative monoids forms a quasivariety, denoted by CCMon,
which is axiomatized relative to commutative monoids by the quasiequation xy = rz — y = 2.
We recall that CCMon has the amalgamation property (see, e.g., [76, pp. 100, 108]) and,
therefore, falls within the scope of Theorem 4.3. On the other hand, we will show that
imp,,,(CCMon) # imp,,(CCMon).
Consider the pp formula

olx,y) =Fz(zz= 1Ny = 1).

Notice that ¢ is functional in CCMon. Indeed, A E ¢(a,b) implies b =1 for all A € CCMon
and a,b € A. Since ¢ is a pp formula, we can apply Corollary 3.11, obtaining that it
defines a unary f € imp,,(CCMon). Moreover, if A € CCMon, then dom(f#) consists of the
invertible elements of A. We show that f ¢ imp,,(CCMon). Suppose the contrary, with a
view to contradiction. Then consider the cancellative commutative monoids N = (N;-, 1) and
Q= (Q;-,1). We have
2 € dom(f9) and f9(2)=1.

Since f is defined by a conjunction of equations, from the above display and 1,2 € N < Q it
follows that 2 € dom(f), a contradiction with the fact that 2 is not invertible in N. Hence,
we conclude that imp,,(CCMon) # imp,, (CCMon).

We conclude this example by showing that imp,, (CCMon) is not closed under composition.
Observe that f coincides with the composition h o g, where A € imp,,(CCMon) is the unary
implicit operation defined by the equation y =~ 1 and ¢ € impeq(CCMon) is the implicit
operation of “taking inverses” in monoids (see Example 3.4) restricted to CCMon. Since
hog = f ¢ imp,(CCMon), this shows that imp,,(CCMon) is not closed under composition. X

5. THE STRONG BETH DEFINABILITY PROPERTY

As the implicit operations of a class of algebras need not be term functions, it is natural to
wonder whether they can at least be interpolated by a set of terms, which can be thought
of as a way of rendering them “explicit”. This idea is reminiscent of the Beth Definability
Theorem of first order logic (see, e.g., [63, pp. 301-302]), a fundamental result stating that



THE THEORY OF IMPLICIT OPERATIONS 31

every implicit definition can be turned explicit (in the setting of first order theories). However,
the notions of implicit and explicit definability typical of first order logic differ from ours. For
instance, an explicit definition in first order logic is simply a definition given by a formula.
As our implicit operations are defined by a formula by definition, they are already explicitly
definable in the sense of first order logic. As a consequence, the Beth Definability Theorem
cannot be applied to our implicit operations in a nontrivial way and, in particular, it does
not guarantee they can be interpolated by a set of terms, that is, made explicit in our sense.

The next definition formalizes the idea of interpolating implicit operations by sets of terms
and is a particular instance of the notion of interpolation introduced in Definition 4.2.

Definition 5.1. Let f be an n-ary implicit operation of a class of algebras K. We say that f
is interpolated by a set {t; : i € I} of n-ary terms of K when it is interpolated by {tX : i € I}.
This means that for all A € K and {(ay,...,a,) € dom(f4) there exists i € I such that

fAay, ... a,) =t2ay, ... a,).
Intuitively, the partial function f is made “explicit” by the terms in {¢; : i € I}.

Notice that f is interpolated by a set of terms if and only if f4(ay, ..., a,) € Sg*(as, ..., an)
for all A € K and (a4, ...,a,) € dom(f4). When f is defined by a formula ¢, the demand
that f be interpolated by the set of terms {t; : i € I'} can be rendered as follows:

K':(p(wla"wxn?y)_>L|ti($1a"'>$n)zy‘ (21>

iel
As a consequence of the Compactness Theorem 1.3, we obtain the following.

Proposition 5.2. An implicit partial function on an elementary class can be interpolated by
a set of terms if and only if it can be interpolated by a finite set of terms.

Proof. Let f be a partial function on an elementary class K. Assume that f is defined by a
formula ¢(z1,...,z,,y) and that it can be interpolated by a set of terms {¢; : i € I}. Then
condition (21) holds. From the Compactness Theorem 1.3 it follows that there exists a finite
T C{t; :i € I} such that

KE p(z,...,20,y) — |_|t(l’1,--.,$n) ~ .
teT

As f is defined by ¢, this means that f is interpolated by the terms in 7' X

When viewed as an implicit operation on a class of algebras K, every term function
(t4 . A € K) of K is interpolated by a single term, namely, ¢ (see Example 3.8). However, not
all implicit operations can be interpolated by terms. For instance, there is no set of terms
interpolating the implicit operation of “taking inverses” in the variety of monoids as we
will see in Example 6.8. It is therefore sensible to isolate the cases in which interpolation
is always possible, something that indicates a good balance between the expressivity of the
language (measured by what can be said in terms of implicit operations) and its actual
richness (measured by what can be interpolated, or made explicit, by terms).
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Definition 5.3. A class of algebras is said to have the strong Beth definability property when
each of its implicit operations can be interpolated by a set of terms.

The reason why we termed our Beth definability property “strong” is to distinguish it from
other weaker definability properties considered in the literature (see [17, 81]). Although we
will not rely on this fact, we remark that, when a quasivariety is the equivalent algebraic
semantics of a propositional logic in the sense of [19], the strong Beth definability property is
the algebraic counterpart of the so called projective Beth property investigated in [9, p. 76]
(see also [65, Sec. 2.2.3] and [88, 89, 90]).

In the context of elementary classes, the strong Beth definability property can be equiva-
lently formulated by restricting our attention to implicit operations defined by pp formulas
and interpolation by a finite set of terms. More precisely, we have the following.

Proposition 5.4. The following conditions are equivalent for an elementary class K:

(i) K has the strong Beth definability property;
(ii) each implicit operation of K defined by a pp formula can be interpolated by a finite set
of terms.

Proof. The implication (i)=-(ii) is an immediate consequence of Proposition 5.2. To prove
(ii)=-(i) suppose that each implicit operation of K defined by a pp formula can be interpolated
by a finite set of terms. Then let f be an implicit operation of K. By Corollary 3.10 there
exist some implicit operations fi,..., f, of K defined by pp formulas such that for each
A €K,
fA=Ru- Ut

By assumption each f; is interpolated by a finite set of terms 7;. In view of the above display,
we conclude that f is interpolated by the terms in 77 U --- U T,. X

Rephrasing condition (ii) of Proposition 5.4 in terms of the validity of certain formulas in
K yields the following.

Corollary 5.5. An elementary class K has the strong Beth definability property if and only
if for each pp formula p(xq,...,x,,y) such that

KE (@1, Tn,y) M@(T1, .., T, 2)) 2 YR 2

there exist terms t1(x1,...,%y), ..., tm(z1,...,2,) Such that
KE @z, . 20,y) — |_| ti(xy, ...,z =Y.
i<m

For elementary classes closed under direct products the equivalence in Proposition 5.4 can
be refined as follows.

Proposition 5.6. The following conditions are equivalent for an elementary class K closed
under direct products:

(i) K has the strong Beth definability property;
(i) each implicit operation of K defined by a pp formula can be interpolated by a single term.
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Proof. (1)=-(ii): Suppose that K has the strong Beth definability property. Then consider
an implicit operation f of K that can be defined by a pp formula ¢(z,...,2,,y). From the
strong Beth definability property it follows that f can be interpolated by a set of terms
{t; i € I}. As [ is defined by ¢, this amounts to

KE o(x1,...,20,y) — |_|t,-(x1, e X)) R Y.
icl
Since ¢ is a pp formula and K an elementary class closed under PP by assumption, we can
apply Corollary 1.4, obtaining that there exists ¢« € I such that

KE p(z1,...,2n,y) = ti(x1, ..., 2,) = y.

As ¢ defines f, we conclude that f is interpolated by t;.
(il)=-(i): Immediate from the implication (ii)=-(i) of Proposition 5.4. X

6. THE STRONG EPIMORPHISM SURJECTIVITY PROPERTY

The strong Beth definability property admits a purely algebraic formulation, as we proceed
to illustrate. Let K be a class of algebras. A homomorphism f: A — B with A, B € K
is said to be a K-epimorphism when it is right cancellable, that is, when for every pair of
homomorphisms g, h: B — C with C € K,

gof=hof implies g = h.

While every surjective homomorphism between members of K is a K-epimorphism, the
converse need not hold in general. For instance, the inclusion map of (Z;-, 1) into (Q;-, 1) is
a nonsurjective epimorphism in the variety of monoids. Consequently, a class of algebras K is
said to have the epimorphism surjectivity property when every K-epimorphism is surjective.

We will show that, in the setting of universal classes, the strong Beth definability property
is equivalent to the following strengthening of the epimorphism surjectivity property (see
Theorem 6.5).

Definition 6.1. A class of algebras K has the strong epimorphism surjectivity property when
for every homomorphism f: A — B with A, B € K and b € B — f[A] there exists a pair of
homomorphisms g, h: B — C with C € K such that go f = ho f and g(b) # h(b).

A
@ |
—

B C
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Remark 6.2. When K is closed under I and S, we may assume that A < B and that the map
f: A — B in the above definition is an inclusion map. In this case, the strong epimorphism
surjectivity property simplifies to the demand that for all A < B € Kand b€ B— A
there exists a pair of homomorphisms ¢, h: B — C with C € K such that g[, = h[4 and
g(b) # h(b). Moreover, when K is a quasivariety, the Subdirect Decomposition Theorem 2.9
allows us to assume C € Kgg;. X

Example 6.3 (Abelian groups). We view groups as algebras A = (A;-,71 /1), i.e., we assume
that multiplication, taking inverses, and the neutral element are all basic operations. While
it is known that every variety of Abelian groups has the strong epimorphism surjectivity
property, we provide a short proof for the sake of completeness. For consider a variety
of Abelian groups V, A < B € V, and b € B — A. Since congruences in Abelian groups
correspond to subgroups, there exists a congruence ¢ of B associated with the subgroup A.
Clearly, the canonical surjection g: B — B/6 is a homomorphism such that ¢g~!(1/0) = A
and B/0 € V. Then let h: B — B/ be the homomorphism that sends every element of
B to 1/6. From g~ '(1/0) = A and the definition of & it follows that g(a) = 1/6 = h(a) for
each a € A, whence g[, = h|,. On the other hand, from b ¢ A = ¢g~'(1/0) it follows that
g(b) # 1/0, while h(b) = 1/6 by the definition of h. Hence, g(b) # h(b). We conclude that V
has the strong epimorphism surjectivity property. X

While every class with the strong epimorphism surjectivity property has the epimorphism
surjectivity property, the converse need not hold in general. For instance, it is known that
only 16 varieties of Heyting algebras have the strong epimorphism surjectivity property [90,
Thm. 8.1]. On the other hand, there exists a continuum of varieties of Heyting algebras with
the nonstrong version of this property [14, p. 199]. However, the two properties coincide in
quasivarieties with the amalgamation property (see Theorem 7.14).

Remark 6.4. In the context of quasivarieties, the strong epimorphism surjectivity property
admits a purely categorical formulation. For observe that each quasivariety K can be viewed
as a category whose objects are the members of K and whose arrows are the homomorphisms
between them. As quasivarieties contain free algebras (see Theorem 2.19), monomorphisms
coincide with embeddings in quasivarieties (see, e.g., [1, Prop. 8.29]). A monomorphism is
said to be reqular when it is an equalizer. It turns out that a quasivariety K has the strong
epimorphism surjectivity property if and only if all monomorphisms are regular in K (see,
e.g., [76, Prop. 6.1]). X

For the present purpose, the interest of the strong epimorphism surjectivity property comes
from the fact that it is the algebraic counterpart of the strong Beth definability property.
More precisely, we will prove the following theorem which generalizes the correspondences
between the strong epimorphism surjectivity property and definability properties established
in [6, Thm. 4], [88, Thm. 3.6], [89, Thm. 3.1], and [64, Thm. 5].

Theorem 6.5. A universal class has the strong epimorphism surjectivity property if and only
if it has the strong Beth definability property.
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As an immediate consequence of Remark 6.2, we obtain an alternative formulation of the
strong epimorphism surjectivity property in terms of dominions.

Proposition 6.6. Let K be a class of algebras closed under 1 and S. Then K has the strong
epimorphism surjectivity property if and only if dg (A, B) = A for every A < B € K.

From Theorem 4.10 and Proposition 6.6 we deduce the following.

Corollary 6.7. A uniwversal class K has the strong epimorphism surjectivity property if
and only if for all A < B € K, f € imp,,(K), and {(a,...,a,) € dom(fB) N A" we have
fB(ay,...,a,) € A.

We are now ready to prove Theorem 6.5.

Proof. Let K be a universal class. To prove the implication from left to right, we reason by
contraposition. Suppose that K lacks the strong Beth definability property. By Proposi-
tions 5.2 and 5.4 there exists f € imp,,(K) that cannot be interpolated by any set of terms.
Therefore, there exists B € K and (ay, .. .,a,) € dom(fB) for which there exists no term
t such that fB(ay,...,a,) = t%(ay,...,a,). Then fB(ay,...,a,) ¢ Sg®(a1,...,a,). Let
A =SgP(ay,...,a,). Since {ay,...,a,) € dom(fBYNA™ and fB(a,,...a,) ¢ A, Corollary 6.7
implies that K lacks the strong epimorphism surjectivity property.

Next we prove the implication from right to left. Suppose that K has the strong Beth
definability property. In order to prove that K has the strong epimorphism surjectivity
property, it suffices to show that dg (A, B) = A for every A < B € K (see Proposition 6.6). To
this end, consider A < B € K and b € dx(A, B). By Theorem 4.10 there exist f € imp,,(K)
and {ay,...,a,) € dom(fB) N A" such that b = fB(ay,...,a,). Since K has the strong
Beth definability property, there exists a term ¢ such that fB(ay,...,a,) = tB(ai,...,a,).
Therefore,

b= fB(ay,...,a,) =tP(ay, ... a,) =t*ay,...,a,) € A

This shows that dg(A, B) C A. As the reverse inclusion always holds, we conclude that

We close this section with a series of examples of classes of algebras with and without the
strong epimorphism surjectivity property.

Example 6.8 (Monoids). As we mentioned, the inclusion map of Z = (Z;-, 1) into Q =
(Q; -, 1) is a nonsurjective epimorphism in the variety of monoids Mon, whence Mon lacks the
epimorphism surjectivity property, and consequently its strong version as well.

This can also be viewed through the lens of Corollary 6.7. For let f be the implicit
operation of “taking inverses” in monoids and recall that it can be defined by a pp formula
(see Theorem 3.7). Clearly, Z < Q and 2 € dom(f©) N Z. Moreover,

fR2)=2""= % ¢ 7.

From Corollary 6.7 it follows that Mon lacks the strong epimorphism surjectivity property.
The same proof yields the same conclusion for the variety of commutative monoids. In view
of Theorem 6.5, both varieties lack the strong Beth definability property. X
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Example 6.9 (Reduced commutative rings). Essentially the same argument shows that the
quasivariety RCRing of reduced commutative rings lacks the strong epimorphism surjectivity
property. More precisely, let Z and Q be the reduced commutative rings of the integers and
the rationals, respectively. Moreover, let f be the implicit operation of RCRing given by
Theorem 3.18. As Q is a field, Theorem 3.18 guarantees that f© is the operation of “taking
weak inverses” in Q. Therefore, we can replicate the argument detailed in Example 6.8,
yielding that RCRing lacks the strong epimorphism surjectivity property, and hence also the
strong Beth definability property. X

Example 6.10 (Distributive lattices). We will show that the variety of distributive lattices
DL lacks the strong epimorphism surjectivity property. For let f be the implicit operation of
“taking relative complements” in distributive lattices and recall that it can be defined by a
pp formula (see Theorem 3.20). Moreover, let B be the four-element Boolean lattice with
universe {0, a,b,1}, where 0 and 1 are the minimum and the maximum of B, respectively.
Lastly, let A be the subalgebra of B with universe {0, a,1}. Since b is the complement of a
relative to [0,1] in B, we have {(a,0,1) € dom(fZ) N A% and

fB(a,0,1) =b ¢ A.

Hence, we can apply Corollary 6.7, obtaining that DL lacks the strong epimorphism surjectivity
property, and thus also the strong Beth definability property. X

The survey [76] contains plenty of examples of classes of algebras with and without the
epimorphism surjectivity property and the intersection property of amalgamation (IPA, for
short), which is equivalent to the strong epimorphism surjectivity property in varieties (see
[76, Prop. 4.5]). Among these examples, we count the following. A semigroup with zero is an
algebra A = (A;- 0), where (A;-) is a semigroup and a0 = 0a = 0 for every a € A. For every
n > 4 the variety of semigroups with zero satisfying the equation 2" = 0 has the epimorphism
surjectivity property, but not its strong version (see [76, p. 89]). Moreover, the varieties of
semilattices and lattices have both the strong epimorphism surjectivity property (see [76,
pp- 99, 102]).

7. TANGIBLE EPIMORPHISM SURJECTIVITY

The aim of this section is to facilitate the task of determining whether a given class of
algebras has the strong epimorphism surjectivity property. On the one hand, we will show
that this problem can often be settled by considering only finitely generated or finitely
presented algebras.

Theorem 7.1. The following conditions are equivalent for a universal class K:

(i) K has the strong epimorphism surjectivity property;
(ii) for each A < B € K with A and B finitely generated we have dx(A, B) = A.

In addition, when K is a quasivariety, we may assume that B is finitely presented.

On the other hand, we will provide a criterion for the validity of the strong epimorphism
surjectivity property which applies to a large class of quasivarieties. More precisely, a term ¢
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of arity > 3 is a near unanimity term (see, e.g., [73, Sec. 1.2.3]) for a class of algebras K when
KEz=tyx,. . ¢0)=tlz,y,z,...,0)=--=t(r,...,x,79).

Intuitively, the term ¢ returns x when its arguments are almost unanimously x. Notably, each
variety with a near unanimity term is congruence distributive (see [92, Thm. 2]), although
the converse need not hold in general (see [92, Lem. 3]). Ternary near unanimity terms play
a prominent role in algebra and are known as majority terms (see, e.g., 21, Def. 11.12.8]). As
t(z,y,z) = (x Ay)V(xAz)V(yAz) is a majority term for every class of algebras with a
lattice reduct, we have the following.

Theorem 7.2. Let K be a class of algebras with a lattice reduct. Then V(K) has a majority
term and is congruence distributive.

We will show that, in the presence of a near unanimity term, the task of determining
whether a quasivariety has the strong epimorphism surjectivity property can be simplified as
follows.

Theorem 7.3. The following conditions are equivalent for a quasivariety K with a near
unanimity term of arity n:
(i) K has the strong epimorphism surjectivity property;
(i) for each finitely generated A < By X -+ X B,_1 with By,..., B, 1 € Ky finitely
generated we have dg(A, By X -+ X B,_1) = A.

Before proving these results, let us provide an example of how to apply them in practice.

Example 7.4 (Relatively complemented distributive lattices). An algebra (A;A,V,r) is a
relatively complemented distributive lattice when (A;A,V) is a distributive lattice and r
a ternary operation such that r(a,b,c) is the complement of a relative to the interval
[anbAc,aVbVc for all a,b,c € A. Notice that if b < a < ¢, then r(a, b, ¢) is the complement
of a relative to [b, ¢|. The class of relatively complemented distributive lattices forms a variety,
which we denote by RCDL. We will prove the following.

Theorem 7.5. The varieties of relatively complemented distributive lattices and of Boolean
algebras have the strong epimorphism surjectivity property.

Proof. We will detail the proof for RCDL only, as the case of Boolean algebras is analogous
and well known (see, e.g., [76, p. 103]). Let Dy be the unique relatively complemented
distributive lattice with universe {0,1} and 0 < 1. We begin with the following observation.

Claim 7.6. We have RCDLyg = (D).

Proof of the Claim. Since every two-element algebra is finitely subdirectly irreducible, we
obtain I(Dy) C RCDL;g. To prove the other inclusion, consider A € RCDL;g. Let A~ be the
lattice reduct of A. To conclude the proof, it will be enough to show that Con(A) = Con(A™).
For suppose that this is the case. Then, as A is finitely subdirectly irreducible, we can apply
Proposition 2.10, obtaining that id4 is meet irreducible in Con(A). Since Con(A) = Con(A ™),
this yields that id is also meet irreducible in Con(A~). Consequently, Proposition 2.10



38 LUCA CARAI, MIRTIAM KURTZHALS, AND TOMMASO MORASCHINI

guarantees that A~ is a finitely subdirectly irreducible distributive lattice. Up to isomorphism,
the only such lattice is the lattice reduct of D,. Hence, we conclude that A = D,, as desired.

Therefore, it only remains to show that Con(A) = Con(A~). As A~ is a reduct of A,
we have Con(A) C Con(A~). Then we proceed to prove the other inclusion. Consider
6 € Con(A~). To prove that § € Con(A), let (a1, az), (b1,b2), (c1,ca) € 6. We need to
show that (r4(ay,by,c1),74(ag, by, c)) € 0. To this end, recall from Theorem 3.20 that
“taking relative complements” is a ternary implicit operation f of DL. Moreover, consider the
canonical surjection mp: A~ — A~/6.

We will prove that for each ¢ < 2,

(a;/0,b;/0,¢;/0) € dom(fA /%) and fA /%(a;/0,b;/0,¢;/0) = r4(a;, b, ;) /0. (22)

First, observe that (a;, by, ¢;) € dom(fA7) and fA™ (a;, b;, ¢;) = r4(as, bi, ¢;) because A~ is the
reduct of the relatively complemented distributive lattice A and f is the implicit operation
of “taking relative complements”. Since f is an operation of DL, it is preserved by the
homomorphism 7: A~ — A~ /0. Therefore, from (a;, b;, ¢;) € dom(fA™) and fA™ (a;, by, ¢;) =
r4(a;, b;, ¢;) it follows that {(a;/0,b;/0,c;/0) = (7(a;), 7 (b;), 7(c;)) € dom(fA /%) and

fAi/g(ai/abi/@aCi/@) = fAi/e(W(ai),W(bi)aW(Ci)) = W(fAi(% bi, ¢i))
= m(r®(as, bi, ;) = r(ai, by, ;) /6.

This establishes (22). As a1/0 = a3/0, b1/0 = by/0, and ¢1/0 = ¢5/6 by assumption, this

implies
rA(ay, b, c1)/0 = fA%(a1/0,01/6,¢1/0) = FA%(a3/0,b5/0, c2/0) = 12 (ag, by, c2) /6,
that is, (r(ay, b1, c1), 74 (ag, by, c2)) € 0, as desired. X

Now, we prove that RCDL has the strong epimorphism surjectivity property. As RCDL has
a lattice reduct, it possesses a majority term. Therefore, we can apply Theorem 7.3, obtaining
that RCDL has the strong epimorphism surjectivity property if and only if for each finitely
generated A < B x C with B, C € RCDL,y finitely generated we have dx(A, B x C) = A.
Together with Claim 7.6 the latter specializes to the following: for each A < Dy x Dy we
have dg(A, Dy x Dy) = A.

To prove this, consider A < Dy x Ds. By inspection for each b € (Dy x Dy) — A one can
find an endomorphism h of Dy x Dy such that id[, = hl, and id(b) # g(b), where id is the
identity map on Dy x D,. Hence, we conclude that dg(A, Dy x Dy) = A. X

We are now ready to prove Theorem 7.1.

Proof. The implication (i)=-(ii) holds by Proposition 6.6. To prove the implication (ii)=-(i),
we reason by contraposition. Suppose that K lacks the strong epimorphism surjectivity
property. In view of Corollary 6.7, there exist C' < D € K, an implicit operation f of K
defined by a pp formula ¢(x1, ..., z,,y), and

(c1,...,cn) € dom(fP)NC™ with fP(cy,...,c,) ¢ C. (23)
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As ¢ defines an implicit operation of K, it also defines an implicit operation g of Q(K) by
Corollary 3.11. As both f and g are defined by ¢ and D € K C Q(K), we have fP = ¢P.
We will make use of this observation without further notice.

Claim 7.7. There exist a finitely presented member B of Q(K) and A < B finitely generated
with elements ay,...,a, € A and a homomorphism h: B — C' satisfying the following
conditions:

(i) {(ai,...,a,) € dom(gB) N A" and gB(ay,...,a,) & A;

(ii) h(ay) = c1,...,han) = cn, M(gB(ay,...,a,)) = fP(ei,...,c), and h[A] C C.

Proof of the Claim. Define B = Tyk(p), a1 = 21/0(9),...,an = x,/0(¢), and A =
Sg®(ai,...,a,) (for the definition of Ty (¢) see Definition 4.12). Clearly, A is a finitely
generated subalgebra of B. Moreover, from Proposition 4.13(i) it follows that B is finitely
presented in Q(K) and that

{ar,...,a,) € dom(gB) N A" and ¢®(ai,...,a,) =y/0(p). (24)

Now, recall from (23) that {ci,...,¢,) € dom(fP) = dom(gP). Together with D € K C Q(K)
and Proposition 4.13(ii), this guarantees the existence of a homomorphism h: B — D such
that

h(a1) = ci,...,h(ay) = cn, and h(y/0(p)) = gP(c1,...,cn) = fPler, ... cn).

From the right hand sides of the above display and (24) it follows that h(¢Z(ai,...,a,)) =
fPler, ... cn).

Therefore, it only remains to prove that g (ai,...,a,) ¢ A and h[A] C C. To this end,
recall that A is generated by aq,...,a, and that c¢,...,¢c, belong to the subalgebra C
of D. Therefore, from the left hand side of the above display it follows that h[A] C C.
Moreover, from the right hand side of (23) and h(g®B(ay,...,a,)) = fP(ci1,...,c,) we obtain
h(gB(ay,...,a,)) & C. Together with h[A] C C, this yields ¢B(ai,...,a,) & A. X

Let A, B, and ay,...,a, be as in Claim 7.7. We have two cases: either K is a quasivariety
or not. We begin with the case where K is a quasivariety. Then K = Q(K). Therefore,
B is a finitely presented member of K and A < B finitely generated. From Claim 7.7(i)
and Theorem 4.10 it follows that gB(ai, ..., a,) € dk(A, B) — A, whence dx(A, B) # A, as
desired.

It only remains to consider the case where K is not a quasivariety. Then let h: B — D be
the homomorphism given by Claim 7.7. Define A’ = h[A] and B’ = h[B]. As D € K and K is
a universal class by assumption, from A’ < B’ < D it follows that A’, B’ € K. Furthermore,
since A and B are finitely generated by Claim 7.7, the algebras A’ and B’ are also finitely
generated. By condition (i) of the same claim we have B F o(ay,...,a,, gB(ay, ..., a,)).
As h: B — B’ is a homomorphism and ¢ a pp formula, we can apply Theorem 1.1(ii),
obtaining B’ £ o(h(a1),...,h(a,), (g8 (a1,...,a,))). By Claim 7.7(ii) this amounts to
B E ey, ... o, fP(c1,.. ., c,)), that is,

(c1,...,¢cy) € dom(fB/) and fBl(cl,...,cn) = fPler, ... ).
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Recall from (23) that fP(cy,...,c,) ¢ C. Together with the right hand side of the
above display and the fact that A" = h[A] C C (see condition (ii) of Claim 7.7), this yields
fBc1,...,¢c,) ¢ A, On the other hand, from ai,...,a, € A and h(a;) = ¢; for each i < n
(see Claim 7.7(ii)) it follows that ¢y, ..., ¢, € h[A] = A’. Hence, the left hand side of the above

display can be improved to (ci,...,¢,) € dom(fB) N (A")*. As a consequence, we can apply
Theorem 4.10, obtaining B (cy, ..., c,) € dc(A’, B') — A’ whence dx(A’, B') # A'. X

Now, we proceed to prove Theorem 7.3. We will make use of the next concept from [29,
Def. 4.4].

Definition 7.8. Let K be a quasivariety, A € K, and 6 € Conk(A). Given a positive integer
n, we say that 6 is n-irreducible in Cong(A) when 6 = 6;N---N0, with 0y,...,6, € Conk(A)
implies =6:N---NO;_1NO; 1 N---NH, for some i < n. When K is clear from the context,
we will simply say that 6 is n-irreducible.

Notice that the only 1-irreducible K-congruence of A is A x A. Moreover, a K-congruence 6
of A is 2-irreducible if and only if either § € lrrg(A) or 6 = A x A. We rely on the following
observation (see [29, Prop. 4.5]).

Proposition 7.9. Let K be a quasivariety, A € K, and 6 € Conk(A) n-irreducible. Then
there exist ¢1,...,¢0n_1 € lrrg(A) such that 0 = ¢y M-+ N Gp_y.

We recall that, for A < B and ¢ € Con(B), we denote by A/¢ the subalgebra of B/¢
with universe {a/¢ € B/¢ : a € A}. We will need the following easy consequence of Zorn’s
Lemma (see the proof of [29, Prop. 3.7]).

Proposition 7.10. Let K be a quasivariety, A < B € K, and b € B — A. There exists
¢ € Conk(B) such that b/¢ ¢ A/¢ and for each 8 € Conk(B/¢) — {idp/s} there exists a € A
such that (a/p,b/¢) € 6.

We are now ready to prove Theorem 7.3. We follow a strategy similar to the one used to
establish an analogous result [29, Thm. 4.3] in the setting of epimorphisms between finitely
generated algebras.

Proof. As the implication (i)=-(ii) is straightforward, we only detail the implication (ii)=-(i).
To this end, we reason by contraposition. Suppose that K lacks the strong epimorphism
surjectivity property. By Theorem 7.1 there exist A < B € K with A and B finitely
generated and some b € dx(A, B) — A.

Claim 7.11. We may assume that for each 8 € Cong(B) — {idg} there exists a € A such
that {(a,b) € 6.

Proof of the Claim. As A < B € Kand b € d(A,B) — A C B — A, we can apply Proposi-
tion 7.10, obtaining ¢ € Cong(B) satisfying the following requirements: b/¢ € B/¢p — A/
and for each § € Conk(B/¢) — {idp/s} there exists a € A such that (a/¢,b/¢) € 6.

Clearly, A/¢ < B/¢ is a proper subalgebra. Moreover, A/¢ and B/¢ are finitely generated
members of K because so are A and B by assumption and ¢ € Cong(B). Corollary 4.6(ii)

implies that b/¢ € dx(A/¢,B/¢). As b/¢p ¢ A/¢, we obtain b/¢ € dx(A/¢, B/d) — A/ .
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Therefore, we may assume that ¢ = idg (otherwise we replace A and B by A/¢ and B/¢,
respectively).

When coupled with the assumption that ¢ = idg, the fact that for each 6 € Cong(B/¢) —
{idp/s} there exists a € A such that (a/¢,b/¢) € 6 implies that for each § € Conk(B)—{idp}
there exists a € A such that (a,b) € 6. X

We will rely on the next observation.
Claim 7.12. The congruence idg is n-irreducible in Conk(B).

Proof of the Claim. Let 6y,...,60,, € Conk(B) be such that idg = ;N ---NH,. Let also
o;i=60N---N0O;_1MNbO;i1---N8A, for each i <n. We will show that ¢; = idg for some i < n.
Suppose the contrary, with a view to contradiction. Claim 7.11 yields aq,...,a, € A such
that (a;, b) € ¢; for every i < n. By assumption K has a near unanimity term ¢(z1,...,x,).
We will prove that
tB(ay,...,a,),b) €0,

for every j < n. To this end, consider j < n. As (a;,b) € ¢; C 0; for every ¢ < n such that
i # j, we obtain (tB(ay,...,a,),tB(b,...,b,a;,b,...,b)) € 6;. Furthermore, since ¢ is a near
unanimity term, we have ¢t2(b,... b,a;,b,...,b) = b. Hence, (t53(ay,...,a,),b) € 6;. This
establishes the above display. Together with the assumption that idg =6, N ---N 4@, this
implies b = tB(ay,...,a,). Asai,...,a, € Aand A < B, we conclude that b € A, which is
false. Hence, idpg is n-irreducible. X

In view of Claim 7.12 and Proposition 7.9, there exist 6;,...,0,_1 € lrr(B) such that
idg = 6:N---Nb,_1. Therefore, we can apply Proposition 2.7 obtaining a subdirect embedding
h: B — B/0; x---x B/0, 1. Let B; = B/; for each i < n — 1. By replacing A and
B by their isomorphic images h[A] and h[B], respectively, we may assume that A <
B < B; x---x B,_;. Notice that each B, = B/ is finitely generated because so is B.
Furthermore, from Proposition 2.10 and 0; € lrrg(B) it follows that B; € Kypg. Lastly, as
bede(A,B)— Aand B < By X --- x B,_1, Corollary 4.6(ii) allows us to conclude that
bedk(A, By x---x B,_1)— A. Hence, dx(A,B; X --- X B,,_1) # A. X

The literature on epimorphisms contains two variants of Theorem 7.3 in which the class
K is required to be an arithmetical variety with the property that the class of its finitely
subdirectly irreducible members is closed under ultraproducts and nontrivial subalgebras [23,
Thm. 6.8] or only a congruence permutable variety [29, Thm. 5.3]. The first variant deals
with the demand that all K-epimorphisms be surjective, while the second with the weaker
demand that all K-epimorphisms between finitely generated algebras be surjective called
the weak epimorphism surjectivity property. In both cases, the conclusion is that failures of
the relevant property are witnessed by counterexamples of the form A < B where B is a
finitely subdirectly irreducible member of K. The possibility of obtaining similar results for
the strong epimorphism surjectivity property is prevented by the following example. However,
we will show in Corollary 7.16 that, under the amalgamation property, the above mentioned
result for congruence permutable varieties becomes available in the context of the strong
epimorphism surjectivity property as well.
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Example 7.13 (Heyting algebras). A Heyting algebra is an algebra (A; A, V,—,0, 1) which
comprises a bounded distributive lattice (A4;A,V,0,1) and a binary operation — (called
implication) such that for all a,b,c € A we have

aANb<c <= a<b—ec

This means that b — ¢ is the largest element d € A such that d A (b — ¢) < ¢ (see [7, p. 173)).

As a consequence, Heyting algebras are uniquely determined by their lattice reduct. In
particular, every finite distributive lattice A can be expanded uniquely to a Heyting algebra
by letting 0 and 1 be the minimum and maximum of A, respectively, and defining

a—b=max{ce A:aNc<b}foralabecA

From a logical standpoint, the importance of Heyting algebras derives from the fact that they
algebraize the intuitionistic propositional logic (see, e.g., [100, Ch. IX]).

Let C be the five-element chain, viewed as a Heyting algebra. Then V(C') is an arithmetical
variety whose class of finitely subdirectly irreducible members is closed under nontrivial
subalgebras and ultraproducts (see, e.g., [21, p. 80] and [40, p. 2 & Thm. 2.3]).

While it is known that V(C') lacks the strong epimorphism surjectivity property (see [88,
Thm. 4.2]), it is impossible to find counterexamples to this property of the form A < B,
where B is a finitely subdirectly irreducible member of V(C'), for in this situation we always
have dV(C)(A, B) = A. X

The next result is well known (see, e.g., [14, Thm. 1.3]). We provide a novel and short
proof using the characterization of dominions in the presence of the amalgamation property
established in Corollary 4.14.

Theorem 7.14. Let K be a quasivariety with the amalgamation property. Then K has the
strong epimorphism surjectivity property if and only if it has the weak epimorphism surjectivity
property.

Proof. The implication from left to right is straightforward. So, let us assume that K
has the weak epimorphism surjectivity property. We will show that K has the strong
epimorphism surjectivity property using Proposition 6.6. To this end, consider A < B € K
and b € domk(A, B). Since K has the amalgamation property, by Corollary 4.14 there
exist f € imp,,(K) and (ay,...,a,) € dom(fP) N A" such that fZ(as,...,a,) = b. Let
A’ = Sg*(ay,...,a,) and B’ = SgB(ay, ... a,,b). Since f is defined by a conjunction of
equations, {(aj, ..., a,) € dom(fBYN (A" and fB(ay,...,a,) = b. So, Corollary 4.14 implies
that b € dx(A’, B"). As B' = Sg®(ay,...,a,,b) and ai,...,a,,b € dg(A’, B'), we obtain
dk(A’, B') = B'. Therefore, the inclusion map A" — B’ is an epimorphism. Since A’, B" are
finitely generated members of K and K has the weak epimorphism surjectivity property, it
follows that A’ = B’, and hence b € B’ = A" C A. We have shown that domg (A, B) = A.
Thus, K has the strong epimorphism surjectivity property. X

Given a class of algebras K closed under subalgebras and B € K, we say that a subalgebra
A of B is K-epic when the inclusion map A — B is a K-epimorphism. In this case, K has the
epimorphism surjectivity property if and only if every A € K lacks proper K-epic subalgebras.
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We rely on the following result, which is an immediate consequence of [29, Thm. 5.3] and the
proof of [93, Thm. 5.4].

Theorem 7.15. Let K be a congruence permutable variety. Then K has the weak epimorphism
surjectivity property if and only if the finitely generated members of Keg lack proper K-epic
finitely generated subalgebras.

As mentioned above, the amalgamation property allows us to obtain a result similar to [23,
Thm. 6.8] and [29, Thm. 5.3] for the strong epimorphism surjectivity property in congruence
permutable varieties.

Corollary 7.16. Let K be a congruence permutable variety with the amalgamation property.
Then K has the strong epimorphism surjectivity property if and only if every finitely generated
B € Ky lacks proper K-epic subalgebras.

Proof. The implication from left to right is straightforward. On the other hand, if every
finitely generated B € Ky lacks proper K-epic subalgebras, then Theorem 7.15 guarantees
that K has the weak epimorphism surjectivity property, which by Theorem 7.14 implies that
K has the strong epimorphism surjectivity property as well. X

The join of a family of varieties Ky, ..., K, is the least variety containing them, namely,
V(K;U---UK,). While the weak and the strong epimorphism surjectivity properties need
not be preserved by joins of varieties, in special cases they are, as we proceed to show.

Theorem 7.17. Let K be an arithmetical variety. If K is the join of finitely many varieties
with the weak epimorphism surjectivity property, then it has the weak epimorphism surjectivity

property.

Proof. Assume that K = V(K U- - -UK,,), where each K; is a variety with the weak epimorphism
surjectivity property. Suppose, with a view to contradiction, that K lacks this property. By
Theorem 7.15 this implies that there exists a finitely generated B € K g with a finitely
generated subalgebra A < B that is proper and K-epic. Applying Jénsson’s Theorem 2.12,
we obtain that B € HSP,(K; U---UK,). By [11, Thm. 5.6] we have P,(K; U---UK,) =
P (Ky)U---UP,(K,). Therefore, B € HSP,(K;)U--- UHSP,(K,) € Ky U---UK,. Then
B € K, for some i < n. But K; has the weak epimorphism surjectivity property by assumption,
whence A < B cannot be a K;-epic subalgebra. As K; C K, in particular it follows that
A < B cannot be a K-epic subalgebra either. But this contradicts the assumption and thus
completes the proof. X

The following is an immediate consequence of Theorems 7.14 and 7.17.

Corollary 7.18. Let K be an arithmetical variety with the amalgamation property. If K is
the join of finitely many varieties with the weak epimorphism surjectivity property, then it
has the strong epimorphism surjectivity property.
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8. EXTENDABLE IMPLICIT OPERATIONS

The implicit operations f of a class of algebras K behave well with respect to extensions,
in the sense that if A < B and A, B € K, then fB extends f4. More precisely, we have the
following.

Proposition 8.1. Let f be an implicit operation of a class of algebras K. For all A, B € K
with A < B the partial function fB extends fA, in the sense that for all {ay,...,a,) €
dom(f4) we have

(ar,...,a,) € dom(fB) and f*(ar,...,a,) = fB(ay,..., an).

Proof. Let i: A — B be the inclusion map and consider {(ay, ..., a,) € dom(f4). Since i is a
homomorphism, A, B € K, and f an implicit operation of K, we obtain

(i(a1),...,i(ay)) € dom(fB) and i(fA(ar,...,an)) = fB(i(ar),...,i(an)).
As i is the inclusion map, this yields the desired conclusion. X

Let f be an implicit operation of a class of algebras K. While Proposition 8.1 guarantees
that fB extends f4 whenever A, B € K and A < B, there is no reason to expect that we
can extend f4 to a total function in this way. More precisely, there may be no extension B
of A in K for which f2 is a total function. This makes the following definition attractive.

Definition 8.2. Let M and K be classes of algebras with M C K. An n-ary implicit operation
f of K is said to be extendable relative to M when for all A € M and aq,...,a, € A there
exists B € K such that

A< B and (ai,...,a,) € dom(fB).

The set of implicit operations of K that are extendable relative to M will be denoted by
ext(M, K). We also let

ext,, (M, K) = ext(M,K) Nimp,,,(K) and ext,, (M, K) = ext(M, K) Nimp,, (K).
When M = K, we write ext(K), ext,,(K), and ext.,(K) instead of ext(K, K), ext,, (K, K), and

ext.,(K, K). Moreover, when an implicit operation is in ext(K), we simply say it is eztendable.

Remark 8.3. Let My, My, K{, Ky be classes of algebras with M; C My, C K, and K; C Ko.
Then the definition of an extendable implicit operation immediately yields that ext(Mg, K;) C
ext(My,Ky). In particular, if M and K are classes of algebras such that M C K, then
ext(K) C ext(M, K). X

The relation between extendable implicit operations and the idea of “extending partial
functions to total ones” is made precise by the next result.

Theorem 8.4. Let K be a universal class and A € K. Then there exists B € K with A < B
such that fB is total for each f € ext(K). When, in addition, K is a quasivariety and A € Ky,
the algebra B can be chosen in Kgg;.

The proof of Theorem 8.4 hinges on the following observation.
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Proposition 8.5. Let K be a quasivariety, A € Kpy, and B € K with A < B. Then there
exist C € Krg with A < C' and a surjective homomorphism h: B — C.

Proof. By the Subdirect Decomposition Theorem 2.9 there exists a subdirect embedding
g: B — [],c; B; for some family {B; : i € I} C Kzy. From A < B it follows that
g: A = [[,c; pilg[A]] is also a subdirect embedding. As A € Kgg, there exists j € I such
that p; o g: A — p;[g[A]] is an isomorphism. Together with p;[g[A]] < Bj, this yields that
pjog: A — B;is an embedding. Since Ky is closed under I, there exist C' € Ky, isomorphic
to B, such that A < C and a surjective homomorphism h: B — C (the latter is obtained
by composing p; o g: B — B; with the isomorphism between B; and C). X

We are now ready to prove Theorem 8.4.

Proof. We begin with the following observation.

Claim 8.6. Let A € K. Then there exists B € K with A < B such that A™ C dom(fB) for
each n-ary f € ext(K).

Proof of the Claim. Recall from Theorem 3.9 that each implicit operation f of K is defined
by an existential positive formula ¢;. Then consider the following set of formulas in the
language of K expanded with fresh constants {c, : a € A} for the elements of A:

Y ={3yps(cay, - Can,y) :mEN, ay,...,a, € A, and f € ext(K) is n-ary}.
Moreover, let I' be a set of axioms for K (which is an elementary class by assumption) and
define

A = diag(A) UX UT.
We will prove that A has a model.
By the Compactness Theorem 1.2 it suffices to show that so does each finite subset of A.
To this end, consider ay,...,ar € A and fi,..., fn € ext(K) such that f; has arity n; for each

i < m. Moreover, for each i < m let al, ... ,aﬁli € {ai,...,ar}. We need to prove that the
following set has a model:

diag(Sg*(ay, ..., a;)) U {3yer (o, - -  Cai, s Y) L <i < m}UT. (25)

To this end, we shall define a sequence Ag < A; < --- < A,, of members of K. First, let
Ay = Sg?(ay,...,a;). Clearly, Ay € K because Ay < A € K and K is a universal class by
assumption. Then suppose that the sequence Ay < --- < A; has already been defined for

i < m. Since Ay < A; we have ai™',.. . alt! € {ay,...,ax} C Ay C Ai. As fiy1 € ext(K)
is n;y1-ary and A; € K, there exists A;;; € K such that {(a}™,... saptl) € dom(fiﬁil“).

Clearly, Ay < --- < A4 is still a sequence of members of K. This concludes the definition
of Ay <A <--- <A,

Observe that SgA(al, ...,a;) = Ag < A,,. Then let A be the expansion of A,, with
constants in {c, : a € Sg*(ay,...,az)} in which each ¢, is interpreted as a. We will prove
that A is a model of the set of formulas in (25). From Sg®(ay,...,a;) = Ay < A, and the
Diagram Lemma 2.20 it follows that A is a model of diag(Sg*(as,...,a;)). Furthermore,
Al E T because A,, € K and I" axiomatizes K. Therefore, it only remains to show that
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At E Hygofi(cazi, e 7Ca§;iwy) for each ¢« < m. As each ¢, is interpreted as a € Ay C A,, in A,
this amounts to

A, FJyey(al,. .. a, ,y) for each i < m.

Consider ¢ < m. The construction of A; guarantees that (ai,...,a, y
fi is defined by ¢y, this yields A; F gpfi(aﬁ,...,a;i,flAi(ai,...,a%i)) Since A; < A,
and ¢y, is an existential positive formula, we can apply Theorem 1.1(i), obtaining A,, F

)€ dom(fA). As

er(al, ... al, fAia,. .. ,al, ), whence A,, F Jypy,(al, ..., al, ,y). Thus, we conclude that
A} is a model of the set of formulas in (25).

As we mentioned, from the fact that the set of formulas in (25) has a model it follows that
A also has a model B*. Let B be the £Lk-reduct of B*. Since BT is a model of T, so is B.
Together with the assumption that I' axiomatizes K, this yields B € K. Furthermore, as B™
is a model of diag(A), we can apply the Diagram Lemma 2.20, obtaining that A embeds into
B via the map that sends a to the interpretation of ¢, in B™. Since K is an elementary class,
it is closed under I. Therefore, we may assume that A < B and that ¢, is interpreted as a in
B+,

To conclude the proof of the claim it only remains to show that A" C dom(fB) for each
n-ary [ € ext(K). To this end, consider an n-ary f € ext(K) and ay,...,a, € A. As BT
is a model of X, we obtain B F Jyps(ay,...,a,,y). Since ¢; defines f, this amounts to
{ay,...,a,) € dom(f®). X

Now, we proceed to prove the first part of the statement of Theorem 8.4. Consider A € K.
We will define a sequence {A; : i € N} of members of K. First, let Ay = A. Then suppose
A; € K has already been defined. By Claim 8.6 there exists A;;; € K with A; < A; 4
and A? C dom(fA+1) for each n-ary f € ext(K). By definition the sequence {A; : i € N}
constructed in this way is such that

A:A0<A1<A2<"'

Now, as K is a universal class, it is closed under unions of chains of algebras by Proposi-
tion 2.4. Therefore, the union B of the chain in the above display belongs to K. Furthermore,
A = Ay < B. To conclude the proof of the first part of the statement, it only remains
to show that fB is total for each f € ext(K). To this end, let f € ext(K) be n-ary and
bi,...,b, € B. As B is the union of the chain in the above display, there exists i € N such
that by, ...,b, € A;. By the definition of A;;; we have (by,...,b,) € A? C dom(f4i+1). As
A1 < B, we can apply Proposition 8.1, obtaining (b, ..., b,) € dom(fB). Hence, fB is a
total operation, as desired.

To prove the second part of the statement of Theorem 8.4, suppose that K is a quasivariety
and consider A € Kgyg. In view of the first part of the statement of Theorem 8.4, there
exists B € K with A < B such that fB is total for each f € ext(K). By Proposition 8.5
there also exist C' € Ky with A < C and a surjective homomorphism h: B — C. To
conclude the proof, it only remains to show that f€ is total for each f € ext(K). To this
end, consider an n-ary f € ext(K) and ¢,...,¢, € C. Since h: B — C is surjective, there
exist by,...,b, € B such that h(b;) = ¢; for each j < n. Recall that f® is total because
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f € ext(K® K). Therefore, (by,...,b,) € dom(fB). As f is an implicit operation and h a
homomorphism, we conclude that {(ci,...,c,) = (h(by),...,h(b,)) € dom(f°). X

The following is a consequence of Theorem 8.4.

Corollary 8.7. Given a universal class K, the classes ext(K) and ext,,(K) are closed under
composition.

Proof. Consider an n-ary g € ext(K) and m-ary fi,...,f, € ext(K). Let A € K. By
Theorem 8.4 there exists B € K with A < B such that ¢B, fB,..., fB are total. It then
follows from the definition of composition that g(fi,...,, ) is also total. Therefore, ext(K) is
closed under composition. As imp,,(K) is closed under composition by Proposition 3.13, we
obtain that ext,,(K) is also closed under composition because ext,,(K) = ext(K)Nimp,,(K). X

Example 8.8 (Cancellative commutative monoids). Recall from Example 4.16 that the class
of cancellative commutative monoids forms a quasivariety, which we denote by CCMon. The
importance of cancellative commutative monoids is due to the following well-known result
(see, e.g., [84, pp. 39-40]).

Theorem 8.9. The quasivariety of cancellative commutative monoids is the class of monoid
subreducts of Abelian groups.

Recall from Theorem 3.7 that “taking inverses” is an implicit operation of the variety of
monoids, definable by the conjunction of equations ¢ = (z-y =~ 1) M (y-x = 1). Clearly, its
restriction to CCMon is an implicit operation of CCMon, which is defined by the equation
x -y = 1. We will prove the following.

Theorem 8.10. Tuking inverses is a unary extendable implicit operation of the quasivariety
of cancellative commutative monoids, which, moreover, can be defined by the equation x-y = 1.

Proof. 1t suffices to prove that the implicit operation f of “taking inverses” in CCMon is
extendable. To this end, consider A € CCMon and a € A. In view of Theorem 8.9, A is a
subreduct of an Abelian group B. Let C' be the monoid reduct of B. Since B is an Abelian
group, C' is a cancellative commutative monoid by Theorem 8.9. Therefore, C € CCMon.
Furthermore, a € A C C' has an inverse in C because C is the reduct of a group. Therefore,
a € dom(f€). Hence, we conclude that f is extendable. X

On the other hand, the implicit operation f of “taking inverses” in the variety of all monoids
is not extendable. For suppose the contrary, with a view to contradiction. By Theorem 8.4
this implies that for each monoid A there exists a monoid B such that fB is total, that is,
such that B is the reduct of a group. As a consequence, we obtain that every monoid embeds
into the monoid reduct of a group. But this is false because monoid subreducts of groups
need to be cancellative and noncancellative monoids exist (e.g., full transformation monoids).
We conclude that f is not extendable. An analogous argument shows that the restriction of
f to the variety of commutative monoids is also not extendable. X

The next results simplify the task of proving that an implicit operation is extendable.
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Proposition 8.11. Let K be an elementary class and M C K. The following conditions hold:
(i) if K CU(M), then ext(K) = ext(M, K);
(ii) if P(K) C K C Q(M), then ext,,(K) = ext,,(M,K).

Proof. We begin with the following observation.
Claim 8.12. We have ext(M, K) C ext(P, (M), K).

Proof of the Claim. Consider f € ext(M,K), A € P, (M) and a4,...,a, € A. Then there
exist {A; :i € I} € M and an ultrafilter U on I such that A = [[..; A;/U. Moreover, there
exist aj,...,a; € [[,c; Ai such that a; = a; /U for each i < n. Lastly, since f is an implicit
operation of K, it is defined by a formula .

As {A; : i € I} C M, from the assumptions it follows that for each i € I there exists
B; € K with A; < B; such that (aj(i),...,a’(i)) € dom(fBi). Since ¢ defines f, this yields
B; F Jyp(ai(i),...,ak(i),y) for each i € I. Let B = [],.; Bi;/U. By Lo§" Theorem 1.6 we
have

i€l

B F 3ye(ai/U,... a,/Uy).

Observe that B € K because {B; :i € I} C K and K is an elementary class by assumption
and, therefore, closed under P . Together with the fact that ¢ defines f and the above display,
this yields (a}/U,...,a’/U) € dom(fB). Lastly, recall that A; < B; for each i € I. As a
consequence, the map h: A — B defined by the rule h(a/U) = a/U is an embedding and

(h(ay), ... han)) = (h(a*/U),... h(a"/U)) = (a/U,...,a" U} € dom(fB).

As K is closed under I (because it is an elementary class), we may assume that h: A — B
is the inclusion map. Therefore, we obtain that A < B € K and (ay, ..., a,) € dom(fB), as
desired. X

(i): Suppose that K C U(M). The inclusion from left to right follows from Remark 8.3. To
prove the other inclusion consider f € ext(M,K), A € K, and a4, ...,a, € A. By Theorem 2.2
we have U(M) = ISP, (M). Together with A € K C U(M), this yields A € ISP,(M). Therefore,
there exist B € P, (M) and an embedding h: A — B. By Claim 8.12 there exists also C € K
such that B < C and (h(ay),...,h(a,)) € dom(f©).

Since C' € K and K is closed under I, we may assume that h: A — C' is the inclusion
map. Consequently, we obtain that A < B < C € K and (ay,...,a,) € dom(f¢). Hence,
we conclude that f is extendable.

(ii): Suppose that P(K) € K € Q(M). The inclusion from left to right follows from
Remark 8.3. To prove the other inclusion consider f € ext,,(M,K), A € K, and ay,...,a, € A.
Assume that f is defined by a pp formula ¢. By Theorem 2.2 we have Q(M) = ISPP,(M).
Together with A € K C Q(M), this yields A € ISPP,(M). Therefore, there exist {B; :
i € I} € P, (M) and an embedding h: A — [],.,; B;. By Claim 8.12 there exists also
{C;:i€ I} CKsuch that B; < C; and (p;i(h(ay)),...,pi(h(a,))) € dom(fC) for each i € I.

Let C = [];;Ci. From {C; : i € I} C K and the assumption that P(K) C K it
follows that C' € K. Furthermore, Hie ; Bi < C because B; < C; for each ¢ € I. There-

fore, h: A — [[,c; Bi can be viewed as an embedding h: A — C. Lastly, recall that
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(pi(h(ay)),...,pi(h(ay))) € dom(f€:) for each i € I. As ¢ defines f, this amounts to
C; E Jyp(pi(h(ar)),...,pi(h(a,)),y) for each i € I. As ¢ is a pp formula by assumption,
we can apply Theorem 1.1(ii) to the definition of C, obtaining C F Jyp(h(ay), ..., h(a,),y).
Since C € K, this amounts to (h(a,),...,h(a,)) € dom(f°).

Since C' € K and K is closed under I, we may assume that h: A — C'is the inclusion map.
Consequently, we obtain that A < [[,.; B; < C € K and (a4, . .., a,) € dom(f€). Hence, we
conclude that f is extendable. X

Recall that, given a class K of algebras, we denote the class of finitely generated members

of K by K'e.

Theorem 8.13. The following conditions hold for a class K of algebras:

(i) if K is a universal class, then ext(K) = ext(K', K);
(i) if K is a quasivariety, then ext,,(K) = ext,,(KE, K).

Proof. (i): Let K be a universal class and recall from Proposition 2.15 that K = U(K'®).
Therefore, K is elementary and K C K C U(K'™). Consequently, we can apply Proposition
8.11(i) to the case where M = K obtaining ext(K) = ext(K', K).

(ii): The inclusion from left to right is straightforward. To prove the other inclusion,
observe that Proposition 2.16 guarantees that K = Q(K,). Moreover, P(K) C K because
K is a quasivariety. Therefore, we can apply Proposition 8.11(ii), obtaining ext,,(K) =
extpp(Kf{gSI, K). X

Corollary 8.14. A pp formula p(z1,...,x,,y) defines an extendable implicit operation of a
quaswariety K if and only if for each A € K, there exists B € K with A < B such that for
all ay, ..., a, € B there ezists a unique b € B such that B E p(ay,...,a,,b). The equivalence
still holds if we require B to be a member of Kyg.

Proof. The implication from left to right and the last part of the statement follow from
Theorem 8.4. To prove the implication from right to left, assume that for each A € KL, there
exists A* € K with A < A* such that for all aq,...,a, € A* there exists a unique a € A*
such that A* F ¢(aq,...,a,,b).

We begin by showing that ¢ defines an implicit operation of K. Let

M={A": AcKE]}

Observe that ¢ is functional in M by assumption. As ¢ is a pp formula, we can apply
Corollary 3.11, obtaining that ¢ is functional in Q(M) as well. Since M C K and K, C S(M),
we have K = Q(M) by Proposition 2.16. Hence, we conclude that ¢ defines an implicit
operation f of K which, moreover is extendable by Theorem 8.13(ii). X

So far, the only concrete example of an extendable implicit operation that we have
encountered is that of “taking inverses” in the quasivariety of cancellative commutative
monoids (see Example 8.8). We close this section with five additional examples related to
filtral quasivarieties, reduced commutative rings, distributive lattices, Hilbert algebras, and
pseudocomplemented distributive lattices.
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Example 8.15 (Filtral quasivarieties). A quasivariety K is said to be relatively filtral when
for every subdirect product A < [[,.; A; with {A; : i € I} C Ky and every 6 € Conk(A)
there exists a filter ' on I such that

0 ={(a,b) e AxA:Jaxb] € F}.

When K is a variety, we simply say that it is filtral. This notion originated in the context of
varieties [87] and was extended to quasivarieties in [24]. Examples of filtral varieties include
the variety of (bounded) distributive lattices (see, e.g., [10, Ex. 3]).

We recall that the quaternary discriminator function on a set A is the function d4: A* — A
defined for all a,b,c,d € A as

c ifa="b;

da(a,b,c,d) = {

d otherwise.
We will prove the following.

Theorem 8.16. Let K be a relatively filtral quasivariety. Then there exists a quaternary
[ € exte,(K) such that f4 is total and coincides with the quaternary discriminator function

on A for each A € Kgg.

Proof. Consider a relatively filtral quasivariety K. From [24, Thm. 6.3] and the impli-
cation (4)=-(1) in [25, Thm. 4.1] it follows that there exists a conjunction of equations
o(x1, 9, x3,24,y) such that for all A € Kpg and a,b,¢,d, e € A,

AFE p(a,b,c,d,e) <= dal(a,b,c,d) =e.

Therefore, for all A € Kyy and a,b,c,d € A there exists a unique e € A such that A E
¢(a,b,c,d,e). Then Corollary 8.14 implies that ¢ defines an extendable implicit operation f
of K. In view of the above display, f4 coincides with d4 for each A € K. X

Example 8.17 (Reduced commutative rings). In Example 3.16 we proved that there exists
an implicit operation of the quasivariety RCRing of reduced commutative rings that coincides
with the operation of “taking weak inverses” in fields. We now show that this operation is
extendable.

Theorem 8.18. There exists a unary f € ext.,(RCRing) such that f4 is total and coincides
with the operation of taking weak inverses for each field A.

Proof. Let f be the implicit operation of RCRing given by Theorem 3.18. Then f4 is total and
coincides with the operation of taking weak inverses for every field A. Moreover, f is defined
by a conjunction of equations, whence f € imp,, (RCRing). Therefore, it suffices to prove that
f is extendable. To this end, recall from Theorem 3.17 that RCRing = Q(Field), where Field
is the class of fields. As f4 is total for each field A, we can apply Proposition 8.11(ii) (taking
M = Fields), obtaining that f is extendable. X

Example 8.19 (Distributive lattices). Recall from Example 3.19 that “taking relative com-
plements” defines an implicit operation of the variety DL of distributive lattices and that
“taking complements” defines an implicit operation of the variety bDL of bounded distributive
lattices. We show that these operations are extendable.
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Theorem 8.20. The following conditions hold:

() the operation of taking relative complements in DL is a ternary member of ext.,(DL);
(ii) the operation of taking complements in bDL is a unary member of ext.,(bDL).

Proof. We detail only the proof of (i), as the proof of (ii) is analogous. In view of Theorem 3.20,
it suffices to show that the implicit operation f of “taking relative complements” of DL is
extendable. Let D, be the two-element lattice and observe that fP2 it total. As D, is (up
to isomorphism) the only subdirectly irreducible member of DL (see, e.g., [11, Ex. 3.19]),
we obtain that f4 it total for each A € DLg. Therefore, we can apply Theorem 8.13(ii),
obtaining that f is extendable. X

Example 8.21 (Hilbert algebras). The implication subreducts of Heyting algebras are known
as Hilbert algebras (see, e.g., [44]). Hilbert algebras form a variety (see [44, Thm. 3]) that
we denote by Hilbert. Every Hilbert algebra (A; —) possesses a term-definable constant
1 =2 — x and can be endowed with a partial order < defined for all a,b € A as

a<b << a—b=1.

We denote the implication reduct of a Heyting algebra A by A_.. Notably, the order of
A_, coincides with the lattice order of A. We will prove the following.

Theorem 8.22. There ezists a binary f € ext.,(Hilbert) such that fA~ is total and coincides
with A2 for each Heyting algebra A.

Proof. Consider the conjunction of equations
p=y—oxo=)Ny—=>za=1)N(r; = (z3 > y) =1).
We begin with the following observation.
Claim 8.23. For all Heyting algebras A and a,b,c € A,
A Fyla,bc) < aNb=c.
Proof of the Claim. Observe that
AF(c—ax=1)M(c—=br1l) <= (c<aandc<b) <= c<aAb.
As the equation z — (y — z) = A y — z holds in every Heyting algebra, we also have
AFa—(b—c¢)=1 < aANb—cr1l < aAb<c
From the definition of ¢ and the two displays above it follows that
AF p(a,byc) <= aNb=c.

Since ¢ is a formula in the language (—), the demand that A F ¢(a,b,c) is equivalent to
A_ F p(a,b,c). Together with the above display, this yields the desired conclusion. X

Let M be the class of implication reducts of Heyting algebras. Since the variety Hilbert is
the class of implication subreducts of Heyting algebras, we have Hilbert = Q(M). Moreover,
observe that ¢ is functional in M by Claim 8.23. As ¢ is a conjunction of equations, we can
apply Corollary 3.11, obtaining that ¢ defines an implicit operation f of Hilbert. In view of



52 LUCA CARAI, MIRTIAM KURTZHALS, AND TOMMASO MORASCHINI

Claim 8.23, it only remains to show that f is extendable. To this end, consider a Hilbert
algebra A and a,b € A. Then A is a subreduct of a Heyting algebra B, that is, A < B_..
Since fB- is total by Claim 8.23, we conclude that f is extendable. X

Example 8.24 (Pseudocomplemented distributive lattices). A pseudocomplemented distribu-
tive lattice is an algebra (A;A,V,—,0,1) which comprises a bounded distributive lattice
(A;A,V,0,1) and a unary operation — such that for all a,b € A we have

a<b < aNnb=0

(see, e.g., [7, Sec. VIII]).

This means that —b is the largest a € A such that a A b = 0. Consequently, pseudocomple-
mented distributive lattices are uniquely determined by their lattice reduct.

Given a Heyting algebra A and a € A, we define —a = a — 0. The interest of pseu-
docomplemented distributive lattices derives from the fact that they coincide with the
(A, V,—,0,1)-subreducts of Heyting algebras (see, e.g., [19, Proof of Thm. 2.6]).

It is well known that the class of pseudocomplemented distributive lattices forms a locally
finite variety, which we denote by PDL (see, e.g., [7, Thm. VIIL.3.1] and [11, Thm. 4.55]).
The finitely generated members of PDLg, are precisely the pseudocomplemented distributive
lattices whose lattice reduct is a finite Boolean lattice adjoined with a new top element
(see [83, Thm. 2]). Being a finite distributive lattice, every finitely generated member A =
(A; A, V,=,0,1) of PDLg can be expanded with an implication —4 such that (A; A, V, —4
,0,1) is a Heyting algebra. We will show that this expansion is witnessed by an extendable
operation of PDL. More precisely, we will establish the following.

Theorem 8.25. There exists a binary f € exte,(PDL) such that f# is total and coincides
with =4 for each finitely generated A € PDLy.

Proof. Let ¢(x1,x2,y) be the conjunction of the following equations:

T1 ANY < To; (26)
21 V22 S Y (27)
—(zy Vo) = ;s (28)
It will be enough to show that for all finitely generated A € PDLg, and a,b,c € A,
AFE¢(a,bc) <= a—*b=c (30)

For suppose this is true. Then ¢ defines an extendable implicit operation f of PDL by
Corollary 8.14. In addition, the above display guarantees that f4 is total and coincides with
—4 for each finitely generated A € PDLg;, as desired.

We proceed to prove (30). Let A € PDLg; be finitely generated. Then the lattice reduct of
A is a finite Boolean lattice B adjoined with a new top element. We denote the maximum
of B by T, while the minimum and the maximum of A are 0 and 1, respectively. We also
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write a’ for the complement of a € B in the Boolean lattice B. For all a,b € A we have

Vb ifa€ Bandagb;
a—=4b=1{1 if a < b; (31)
b ifa=1.

It follows that

a ifae B—-A{0};
' {0} a ifae B—{T};
—a=4¢1 ifa=0; —oa = ) (32)
: 1 ifae{T, 1}
0 ifa=1.
Therefore,
aVvb ifaeB—{0}
aVb=<1 if a = 0; (33)

b ifa=1.

To prove the equivalence in (30), consider a,b,c € A. We begin with the implication from
right to left. It suffices to verify that A F ¢(a,b,a —4 b), which amounts to check that
(26)-(29) hold in A once evaluated in a,b,a —4 b. It is a straightforward consequence of the
properties of implications in Heyting algebras that a A (a =4 b) <band ~aVb<a —4b
(see, e.g., [7, Thm. IX.2.3(i, iv, v)]). So, (26) and (27) hold in A. From [7, Thm. IX.2.3(ix,
xi)] it follows that =(—aV b) = =—=a A —b = =(a —4 b), and hence (28) holds. It only remains
to verify (29), which states that (a =4 b) Va = =—(a =4 b) V a. First observe that the
equation clearly holds when a € {0,1}. So, we can assume that a ¢ {0,1}. By (28), (33),
and (32) we have

d Vb ifab;

——(a =4 b) = ~—(~aVb) = ==(d' Vb) =
(@48 = —~(cavh) ==l vh) = ¢ T LT

which coincides with a —“ b by (31) because a # 1. Thus, (a =4 b) Va = -=(a =42 b) V a,
and hence (29) holds.

We proceed to prove the implication from left to right in (30). To this end, assume that
A F p(a,b,c). We will show that a =4 b = ¢. From (26) it follows that a A ¢ < b, which
yields ¢ < a —4 b, Tt then remains to show that a —4 b < ¢. We consider different cases
separately. If a = 1, then (27) implies that a =4 b =b = —a V b < ¢. So, we can assume
that a # 1. Consider the case in which a < b. Then

cVa=--cVa=--(-aVb)Va=1Va=1,

where the first and second equalities follow from (29) and (28), and the third from (32)
because —a Vb € {T,1} as a < b. We have thus obtained that ¢V a = 1. Since A has a
second largest element T, we have that 1 is join irreducible in A. So, cVa=1and a # 1
imply ¢ = 1, and hence ¢ = a —* b, because a < b. Finally, we can assume that a # 1 and
a % b. Then a,b+# 1, and so a,b € B. Thus, maVb ¢ {T,1} because a £ b. Then (32) yields
—=(=a V b) = —a Vb, So, (28) implies that =—¢ = —a V b. Therefore, c < —aVbe B—{T},
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and hence ¢ € B—{T}. Then ¢ = =—¢ = —aVb. Since a £ b and a # 1, we have a € B— {0}
and, therefore, ~aVb = a’Vb = a —4 b by (33) and (31). Consequently, c = ~aVb = a —4 b.
This establishes that ¢ = a —4 b in all possible cases and concludes the proof. X

9. ADDING IMPLICIT OPERATIONS

A fundamental question which arises in relation to implicit operations is the following: is it
possible to expand the language of a given class of algebras K with new function symbols for
some of its implicit operations so that every implicit operation of K becomes interpolable by
a set of terms in a class M of algebras in the expanded language? Obviously, the interest
of this possibility depends on whether M meets some basic desiderata: in addition to the
demand that every implicit operation of K can be interpolated by a set of terms of M, we
shall demand from our theory that

(D1) every member of K extends to one of M;
(D2) when such a class M exists, it is unique.

A familiar example of this situation is given by

K = the quasivariety of cancellative commutative monoids;

M = the variety of Abelian groups.

In this case, M is obtained by adding the implicit operation of “taking inverses” to K. The
fact that every implicit operation of K is interpolated by a set of terms of M is a consequence
of M having the strong Beth definability property (see Example 6.3). Furthermore, (D1) holds
because every cancellative commutative monoid extends to an Abelian group by Theorem 8.9.
Lastly, (D2) will be a consequence of the general theory (Theorem 11.7). On the other hand,
we will show that the variety of all commutative monoids lacks an expansion with the desired
properties (Theorem 14.1).

In this section, we begin to set the stage for this theory by describing how to expand a
class of algebras with a given family of implicit operations.

Definition 9.1. Let K be a class of algebras and F C imp(K). An F-expansion of £y is a
language Lk U {gs : f € F}, where gy is a new function symbol of the same arity as that of
f for each f € F. We will often denote an F-expansion of £k by £Lr. When F = {f} for
some f € imp(K), we drop the braces and just write £; and call it an f-ezpansion.

Definition 9.2. Let K be a class of algebras, F C imp(K), and £ an F-expansion of %Y.
(i) For each A € K such that f4 is total for every f € F, let
A[Z ] = the unique £ z-algebra whose Lk-reduct is A and in which
gy is interpreted as fA for each f € F.
(ii) For each M C K let
M[Lr] = {A[LF] : A € M and f* is total for each f € F}.

The class K[£x]| can be viewed as the natural expansion of K induced by the implicit
operations in F. The next result provides an alternative description of the class K[Z £].



THE THEORY OF IMPLICIT OPERATIONS 55

Proposition 9.3. Let K be a class of algebras, F C imp(K), and Lr = Lk U{gs : [ € F}
an F-expansion of Lx. Assume that each f € F is defined by a formula ¢¢. Then

KIZ7] = {B: B is an £r-algebra such that Bly, € K and
BE gf(x1,...,Tn, gf(x1, ..., 2)) for each n-ary f € F}.

Proof. To prove the inclusion from left to right, consider B € K[££|. The definition of K[£ £]
guarantees that there exists A € K such that f4 is total for all f € F and B = A[%#]. In
particular, B is an & z-algebra. As A is the £Lg-reduct of A[£x| by the definition of A[Z£],
this yields B[y, = A € K. Then consider an n-ary f € F. Since f is defined by ¢, and fA
is total, for all aq,...,a, € A we have

(ar,...,a,) € dom(f#) and AFE or(a, ... L, fA(ay, .. an)).

By the definition of A[£#] the operation g; is interpreted in A[£F] as fA. As A is the Lx-
reduct of A[£z], from the above display it follows that A[L 7| E @f(x1, ..., Tn, gp(x1, ..., Tn)).
Since B = A[% x|, we conclude that B & ¢s(z1,...,%n, gf(21,...,2,)), as desired.

Then we proceed to prove the inclusion from right to left. Consider an £ r-algebra B
such that By, € Kand B F ¢f(z1,...,2n, gf(21,...,2,)) for each n-ary f € F. For the
sake of readability, let A = B[, and observe that A € K by assumption. We will prove
that the algebra A[% x| is defined and coincides with B, whence B € K[£x|, as desired.
Since A = B[y, and A € K, it suffices to show that for each f € F the function f4 is total
and coincides with the interpretation of g; in B. To this end, consider an n-ary f € F and
ai,...,a, € A. We need to prove that

<a17' s 7an> S dom(fA) and ng<a17 s 7an> = fA(alv' - >an)‘

First, from the assumption that B E @¢(z1,..., 25, gf(21,...,2,)) it follows that B E
vr(ar, .. .,an,gf(al, .., 0y)). As gy is a formula of £k and A = BJg,, this amounts to
AFEgr(ar,. .. an, g?(al, ...,0y)). Since ¢ defines f, the above display holds. X

As a consequence of Proposition 9.3, we obtain the following.

Corollary 9.4. Let K be a class of algebras, F C imp(K), and £Lx an F-expansion of L.
If K is an elementary class, then K[£x| is an elementary class.

A useful feature of F-expansions is that a map between members of K[£x| preserves
the operations in F if it preserves the operations in £k. This is made precise in the next
proposition.

Proposition 9.5. Let K be a class of algebras, F C imp(K), and L an F-expansion of
Lx. Every homomorphism h: Aly, — Bly, with A, B € K[£F] is also a homomorphism
h: A — B.

Proof. As L is an F-expansion of Lk, it is of the form Lk U {g; : f € F}. Then let
h: Aly, — Blg, be a homomorphism with A, B € K[£z]. It suffices to prove that h
preserves gy for each f € F. To this end, consider f € F. Since A, B € K[££|, we have
A= Aly [£F] and B = By, [£7]. Therefore,

gft = [ and gf = [Pl
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As h: Algy, — Blg, is a homomorphism between members of K and f an implicit operation
of K, we know that h preserves f. In view of the above display, we conclude that h preserves

9r- X

In general, there is no guarantee that each member of K is a subreduct of a member of
K[£#] or, equivalently, that condition (D1) is met. In the setting of universal classes, this is
the case exactly when the members of F are extendable.

Proposition 9.6. Let K be a universal class, F C imp(K), and £Lx an F-expansion of L.
Then K is the class of Lx-subreducts of K[ZL#] if and only if F C ext(K).

Proof. We begin with the implication from left to right. Suppose that K is the class of
%Lx-subreducts of K[£ x| and consider an n-ary f € F. We need to prove that f is extendable.
To this end, consider A € K. By assumption A is a subreduct of some C' € K[£z]. By
the definition of K[£#] there exists B € K in which ¢g? is total for each g € F such that
C = B[%5]. As A is an L-subreduct of C = B[%#] and B is the L-reduct of B[ZL#],
we obtain A < B. Furthermore, fZ is total because f € F. Since A < B € K, we conclude
that f is extendable.

Then we proceed to prove the implication from right to left. Suppose that F C ext(K)
and consider A € K. As K is a universal class, we can apply Theorem 8.4, obtaining some
B € K with A < B such that fB is total for each f € F. By the definition of K[%£ 5] we
get B[% x| € K[£#]. Since B is the Lk-reduct of B[£x] and A < B, the algebra A is an
“L-subreduct of a member of K[££]. X

We close this section with some observations governing the behavior of K[%£ x| with respect
to class operators.

Proposition 9.7. Let K be a class of algebras and F C imp,,,(K). Moreover, let
M= {A € K: f4is total for each f € F}.
Then for each O € {H,P,P,} we have
OM)NK C M.

Proof. In order to prove that O(M) N K C M, consider an n-ary f € F, A € O(M)NK, and
a,...,a, € A. Since F C imppp(K) by assumption, there exists a pp formula p(z1, ..., x,,y)
defining f. We need to show that (ai,...,a,) € dom(f4), which is equivalent to A &
Jyp(ay, ..., a,,y). The definition of M guarantees that

We have three cases depending on whether Q@ is H, P, or P,. First consider the case where
O = H. Then A € H(M) implies that there exist B € M and a surjective homomorphism
h: B — A. Let by,...,b, € B be such that h(b;) = a; for each i < n. From (34) and B € M
it follows that B E Jyp(by,...,b,,y). Since ¢ is a pp formula by assumption, so is Jyp.
Therefore, we can apply Theorem 1.1(ii) to obtain that A F Jyp(h(by),...,h(bs),y). As
h(b;) = a; for each i < n, it follows that A F Jyp(ay,...,a,,y), as desired.
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Then we consider the case where @ = P. From A € P(M) it follows that A =[]
some family {A; : i € I} C M. In view of (34), we have

A, for

el

A; F Jye(pi(ar), ..., pi(a,),y) for every i € I.

Since ¢ is a pp formula by assumption, so is Jyp. Therefore, we can apply Theorem 1.1(ii)
to the above display, obtaining A F Jyp(ay, ..., a,,y), as desired.

Lastly, we consider the case where O = PP,. From A € P (M) it follows that A = [[,., A;/U
for some family {A; : i € I} C M and ultrafilter U on I. Since {A; : i € I} C M, we can apply
Lo$” Theorem 1.6 to (34), obtaining A F Jyp(x1,...,2T,,y). Thus, A E Jyp(ay,...,an,y).
This concludes the proof. X

Proposition 9.8. Let K be a class of algebras, F C imp,,(K), and L7 an F-expansion of
Z«. Moreover, let

M={A cK: f4is total for each f € F}.
The following conditions hold for all N C M and class operators O such that O(K) C K:
(i) if O e {I,H,P,P,}, then

ON[ZF]) = (O(N))[Z£#];
(ii) if O =S and F C imp,,(K), then
S(N[Zz]) € (S(N))[£#].

Proof. As L is an F-expansion of £k, it is of the form £x U {gs : f € F}. This fact will
be used repeatedly without further notice.

(i): Assume that N C M and let O € {I, H, P, P,} be such that O(K) C K. We first establish
the following.

Claim 9.9. For every A € NUO(N) the algebra A[£Lx] is defined.

Proof of the Claim. The definition of M guarantees that A[£#| is defined for each A € M.
It then suffices to show that NUO(N) € M. As N C M holds by assumption, it remains to
prove that O(N) C M. From N C M C K and O(K) C K it follows that O(N) C O(M) and
O(N) € O(K) C K. Therefore, O(N) € O(M)NK. Since Proposition 9.7 yields O(M)NK C M,
we conclude that Q(N) C M. X

We have to consider four cases depending on whether O is I, H, P, or P,. We will start
with the cases where @ = I and @ = H, which can be treated simultaneously. Suppose that
O € {I,H}. To prove that O(N[Z££]) C (O(N))[£x] consider A € O(N[£x]). Then there
exist B € N[£#] and a surjective homomorphism h: B — A, which we can assume to be an
isomorphism when @ = 1. As B, € N and h is also a homomorphism h: Bly, — Alg,,
which is an isomorphism when O = I, we obtain Al € O(N). Hence, Al [£F] is defined
by Claim 9.9 and, therefore, Al, [£5] € (O(N))[£#]. To show that A € (O(N))[£#], it

is then sufficient to prove that A = Al [£7]. Let f € F be n-ary, a1,...,a, € A, and
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bi,...,b, € B be such that h(b;) = a; for each ¢ < n. We have

g}“(al, CeyGp) = g?(h(Ch), o h(an)) = h(g}g(blv )
= h(fBL‘fK (b1,...,bn)) = fAL%K (h(b1), - .-, h(bn))
_ fAlac(ay o a).

where the first and last equalities hold because a; = h(b;) for each i < n, the second and
fourth hold because h: B — A and h: B[y, — Alg, are homomorphisms and f € imp(K),
and the third holds because g]]? — fBlee by the definition of g]]? . Together with the fact
that A and ATy, [£7] have the same £Ly-reduct, the above display yields A = Afq, [£7], as
desired.

For the reverse inclusion, consider A[£x| € O(N)[££]. Then there exist B € N and
a surjective homomorphism h: B — A, which is an isomorphism when @ = 1. Since
B € N, Claim 9.9 yields that B[£#] is defined and belongs to N[£#£]. By Proposition 9.5,
h: B[%£7] — A[%7] is a homomorphism. Thus, we conclude that A[Z£ 7] € O(N[ZL£]).

Then we consider the case where @ = IP. From the definitions of P(N[££]) and (P(N))[£ ]
it follows that

AeP(NZs]) <= A= H(Ai[ﬁf]) for some {A; 1€ 1} CN;
Ac (B(N) 2] = A= (HAZ) [%#] for some {A; :i € I} CN.

Therefore, to conclude that P(N[££]) = (P(N))[£#], it suffices to show that for every family

{A;:iel} CN,

[Taies) = (T A) 12

icl icl
where the algebras in the above display are defined by Claim 9.9. Observe that [],.,(A;[£x])
and ([[;c; Ai)[£F] have the same Zk-reduct, namely, [],.; A;. It will then be enough to
prove that for all n-ary f € F and ay,...,a,,b € [[,.; A,

ng eI [ .7-'])( gf]._[ eIl )[ .7-'](

To this end, recall from the assumptions that f is defined by a pp formula (. Observe that
[Tic; Ai € P(K) C K, and hence fllier4i is defined. We will prove that

gfl_[iez(Ai [£7]) (

i€l

ai,...,a,) =b <= ai,...,a,) =b. (35)

a1y ... 0y) =b < g?i[‘%ﬂ(

pi(ai),...,pi(an)) = pi(b) for every i € I

= fA(pi(ar),...,pila,)) = pi(b) for every i € I

< A, Fppi(ar),...,pi(a,),pi(b)) for every i € I

<— HAi Ep(al,...,a,,b)
i€l

— fllierAi(qy . a,) =0

<

gMer ALz oy 2,
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The above equivalences are justified as follows. The first holds by the definition of a direct
product, the second by the definition of A;[£#], the third and the fifth because f is defined by
@, the fourth follows from an application of Theorem 1.1(ii) made possible by the assumption
that ¢ is a pp formula, and the last one holds by the definition of (J],.; A;)[£x]. This
establishes (35), thus concluding the proof that P(N[££]) = (P(N))[£#].

Lastly, we consider the case where @ = P,. From the definitions of P,(N[£#]) and
(P,(N))[£#] it follows that

A € P (N[Zf]) < there exist {A; i€ I} CN and an ultrafilter U on
such that A = H I\ L))/ U;

el

A € (P,(N))[25] <= there exist {A;:i € I} CN and an ultrafilter U on [
such that A = <HAZ/U> (L.
i€l
Therefore, to conclude that P, (N[££]) = (P,(N))[£#], it suffices to show that for every family
{A; :i €I} CN and ultrafilter U on I,

[Tcaie)/v = (T] A/v)is.

il el
where the algebras in the above display are defined by Claim 9.9.
Similarly to the case @ = P it suffices to show that for all n-ary f € F and aq,...,a,,b €

Hie[ A'/U

gAY (U, an U = b0 = gl MO o e, o) = 0jU (36)
To this end, recall from the assumptions that f is defined by a pp formula ¢. Observe that
[Tic; Ai/U € P,(K) C K, and hence fIlier 4i/U is defined. We will prove that

gjl:fieI(Ai[ff])/U<a1/U7 o ’an/U) — b/U — gjlc_[iEI(Ai[EFD(al, o ,CLn)/U = b/U

[[g}:["e’(Ai[zF])(al, coay) =V eU

{ieI: g/ pilar),... pilan)) = pi(b)} €U
{iel: fYpi(ar),...,pilan) = pi(b)} €U
{iel: A Eppila),...,pila,),pi(b)} €U
[p(a,... a,,0)] €U

[[A/UE ela/U,... a./Ub/U)

iel

flier&/Y(q, /U, . .. a,/U) = b/U
g(HzeIAl/U [IF]( 1/U an/U) — b/U

ﬂﬂ [

The above equivalences are justified as follows. The first holds by the definition of a quo-
tient algebra, the second by the definition of an ultraproduct, the third and the sixth
are straightforward, the fourth holds by the definition of A;[%£x|, the fifth and the eighth
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because ¢ defines f, the seventh follows from Lo$” Theorem 1.6, and the last one from
the definition of ([[,.; Ai/U)[£r]. This establishes (36), thus concluding the proof that
B,(N[£5]) = (B,(N))[£5].

(ii): Suppose that O = S and that each f € F is defined by a conjunction of equations
@r. We need to prove that S(N[£z]) C (S(N))[£z]. Consider A € S(N[££]). Then there
exists B € N such that A < B[£#]. As B is the Lg-reduct of B[%£#| and A < B[£F]|, we
obtain Ay, < B € N. Therefore, AJ,, € S(N). We will prove that the algebra Al [£7]
is defined and coincides with A, whence A € (S(N))[£#], as desired.

Since K is closed under S by assumption and N C K, we obtain Ay, € S(N) C K. It
then suffices to show that for each f € F the function f Aley is total and coincides with the
interpretation of gy in A. To this end, consider an n-ary f € F and a4, ...,a, € A. We need
to prove that

(ay, ..., a,) € dom(fA1#x) and g?(al, an) = fM(ay, . ay). (37)
Observe that
fBlay,... a,) = gf[‘%“](al, ce Q) = g}“(al, cey Q)
where the first equality holds by ay,...,a, € A C B and the definition of B[%k]|, and the

second holds because A < B[%k]. Since f is defined by a conjunction of equations ¢ by
assumption, the above display yields

B E ¢f(aq, ... ,an,gf(al, Cey ).

From A < B[] it follows that A, < B because B is the Lx-reduct of B[£f]|. As ¢y
is a conjunction of equations and Afy, < B, we can apply Theorem 1.1(iii) to the above
display obtaining
Algy, Foslay,... ,an,g?(al, Cey Q).
Since ¢ defines f and AT, € K, we conclude that (37) holds. X
Proposition 9.10. Let K be a class of algebras, F C imp,,,(K), and Lz an F-expansion of
Z«. Moreover, let
M= {A € K: f4is total for each f € F}.
Then for all N C M and class operator O € {U, Q, ISP},
if K is closed under O, then O(N[Z££]) = S((O(N))[£x]).

Proof. We will detail the case in which O = U, as the proof of the case in which O € {Q, ISP}
is analogous. Assume that K is closed under U. Then it is closed under I and P, as well.
Moreover, by assumption

NCM (38)
Therefore, from Proposition 9.8 it follows that
[P, (N[Z£#]) = (IP,(N))[£F]. (39)

We will show that
U(N[£7]) = ISP, (N[£#]) = SIF,(N[£#]) = S((IF,(N))[£#]) € S((U(N))[£5]).
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The first equality above holds by Theorem 2.2, the second because IS = SI, the third follows
from (39), and the last inclusion holds because IP,(N) C U(N). This establishes the inclusion
U(N[L5]) C S((U(N))[£5]).

Therefore, it only remains to prove the reverse inclusion S((U(N))[£z]) C U(N[£#]).
Consider A € S((U(N))[£#]). Then there exists B € U(N) such that B[£#] is defined and
A < B[%#]. From B € U(N) and Theorem 2.2 it follows that B € ISP, (N). Therefore, there
exist a family {B; : i € I} C N, an ultrafilter U on I, and an embedding h: B — [[..; B:;/U.
In view of (38), we have

el

{B;:ie€l}CM (40)
Since the hypotheses of Proposition 9.8 are satisfied, we can apply Claim 9.9 to the assumptions
that K is closed under P, and the above display, obtaining that the algebra ([ [,.; Bi/U)[£F]
is defined. Observe that B,[],.; B;/U € ISP,(N) C K because N C K and K is closed under
U by assumption. Consequently,

B[Zr], <H Bi/U> [£7] € K[£LF].
icl
Since h: B — [],.; B;/U is an embedding between members of K, from the above dis-
play and Proposition 9.5 it follows that h can be regarded as an embedding h: B[Zz] —
(ILic; Bi/U)[£5]. Lastly, (40) and the assumption that K is closed under P, allow us to
apply Proposition 9.8(i), obtaining

H(Bi[iff])/U € (B,({B; :i € 1}))[£r].

As the Ly-reduct of [[,.,(Bi[£#])/U is [[,c; Bi/U, the above display yields
[1Bi)/0 = ([]B:/U)it7.

i€l i€l
Therefore, the map h: B{£r| = [[,c;(Bi[£5])/U is an embedding. Since {B; : i € I} C N,
it follows that B[%x| € ISP,(N[£%]). As A < B[%#] by assumption, we conclude that
A € SISP,(N[£#]) C U(N[£L£)). X

10. PRIMITIVE POSITIVE EXPANSIONS

As we mentioned, our aim is to expand the language of a given elementary class of algebras
K by adding to it enough implicit operations so that every implicit operation of K becomes
interpolable by a set of terms in a class M of algebras in the expanded language. In view of
Corollary 3.10, the latter can be stated as the demand that implicit operations of K defined
by pp formulas be interpolated by terms of M. Because of this, from now on we shall restrict
our attention to implicit operations defined by pp formulas. Furthermore, we require the
implicit operations under consideration to be extendable in order to guarantee the validity of
condition (D1) (see Proposition 9.6).

However, even when the implicit operations in F are defined by pp formulas and extendable,
the class K[£#] may lack some desirable closure properties. More precisely, there is no
guarantee that if K is a universal class or a quasivariety, then so is K[£#]. This problem is
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easily overcome by closing K[£ 7| under S, leading to the core of this section, namely, the
notion of a pp expansion.

Definition 10.1. Let K and M be a pair of classes of algebras. Then M is said to be a
primitive positive expansion (pp expansion for short) of K when M = S(K[£#]) for some
F Cext,,(K) and F-expansion L of L. In this case, we say that M is induced by F and
Lr.

From Proposition 9.6 we deduce that pp expansions satisfy condition (D1).

Proposition 10.2. Let M be a pp expansion of a universal class K. Then K is the class of
Lk-subreducts of M.

Proof. Assume that M is a pp expansion of K of the form S(K[££]). As K is a universal
class, we can apply Proposition 9.6, obtaining that K is the class of £k-subreducts of K[£ £].
Hence, K is also the class of £k-subreducts of S(K[££]) = M. X

As we announced, the following holds true.

Theorem 10.3. Let K be a class of algebras. The following conditions hold for a pp expansion
M of K induced by F and L x:

(i) if K is a universal class, then M is a universal class;
(ii) if K is a quasivariety, then M is a quasivariety such that Mys C S(Kpat[£L#]);
iii) if K is a variety and F C ext.,(K), then M is a variety.

q

As shown in [27, Thm. 2.1], the hypothesis that F C ext.,(K) in Theorem 10.3(iii) cannot be
dispensed with.

Besides the above theorem, the main result of this section consists of four observations
which facilitate the task of detecting the pp expansions of a given class of algebras. On the
one hand, we will establish the following description of pp expansions induced by implicit
operations definable by conjunctions of equations (for a similar result, see [32, Lem. 2.1]).

Theorem 10.4. Let K be a universal class axiomatized by a set of formulas ¥ and M a pp
ezpansion of K induced by F C extey(K) and Lr = LxU{gs : f € F}. Then M = K[ZL£] and
M is aztomatized by

SU{er(x1,. . 2, gp(21, ... 2)) ¢ f s an n-ary member of F},
where @ denotes the conjunction of equations defining f € F.

On the other hand, we will establish the next description of pp expansions in terms of the
class operators of universal class and quasivariety generation.

Theorem 10.5. Let K be a class of algebras, F C ext,,(K), and L an F-expansion of Lx.
Moreover, let N C K and assume that f4 is total for all A € N and f € F. Then for each
O € {U,Q} such that K= O(N) the class O(N[ZL£]) is a pp expansion of K that coincides
with S(K[ZL£]).

We will then show that the relation “being a pp expansion of” is transitive.
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Theorem 10.6. Every pp expansion of a pp expansion of a class of algebras K is a pp
expansion of K.

Lastly, we will show that enlarging the set of implicit operations inducing a pp expansion
of a class of algebras also yields a pp expansion of the same class.

Theorem 10.7. Let K be a universal class and F C G C ext,,(K). Let also Lx be an
F-expansion of Lk and Lg a G-expansion of Ly such that Lx C Lg. Then S(K[£Lg]) is a
pp expansion of S(K[ZL£]).

Before proving Theorems 10.3, 10.4, 10.5, 10.6, and 10.7, let us illustrate how these results
can be used to describe pp expansions of familiar classes of algebras.

Example 10.8 (Lazy pp expansions). Every class of algebras K closed under S is a pp
expansion of itself. For let F = (). Then F = () C ext,,(K). Furthermore, let £ = Lk
and observe that £r is an F-expansion of Lk because F = (). Therefore, the class K[£#]
coincides with K. As K is closed under S, we conclude that K = S(K[££]), whence K is a pp
expansion of itself. X

Example 10.9 (Cancellative commutative monoids). We will prove the following.

Theorem 10.10. The variety of Abelian groups is a pp expansion of the quasivariety of
cancellative commutative monoids.

Proof. Let f be the unary implicit operation of the quasivariety of cancellative commutative
monoids CCMon given by Theorem 8.10. Recall from the same theorem that f is extendable
and defined by the equation -y =~ 1. Moreover, let ()~! be a unary function symbol and
denote by ¢! the result of applying ()~! to a term ¢. Then the language £; = LccmonU{() '}
is an f-expansion of £ccmon, in which the role of gy is played by ().

As CCMon is a universal class, Theorem 10.4 yields that CCMon[%/] is a pp expansion of
CCMon axiomatized by the axioms for cancellative commutative monoids plus the equation
r-x a1l

Clearly, every member of CCMon[%;] is an Abelian group. On the other hand, every
Abelian group can be obtained by adding the implicit operation f to its monoid reduct, which
is a cancellative commutative monoid. Therefore, CCMon[%£| coincides with the variety of
Abelian groups. X

Example 10.11 (Distributive lattices). Our aim is to establish the next result.

Theorem 10.12. The following conditions hold:

(i) the variety of relatively complemented distributive lattices is a pp expansion of the variety
of distributive lattices;

(ii) the variety of Boolean algebras is a pp expansion of the variety of bounded distributive
lattices.

Proof. We detail only the proof of (i), as the proof of (ii) is analogous. Let f be the ternary
implicit operation of the variety of distributive lattices DL given by Theorem 8.20. Recall
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from the same theorem that f is extendable and defined by the conjunction of equations
o=@ ANy=riANzaAxg) N (xy Vy=xVayVas).

Moreover, let  be a ternary function symbol. Then the language £; = £p. U {r} is an
f-expansion of £p, in which the role of g; is played by 7.
As DL is a universal class, we can apply Theorem 10.4, obtaining that DL[{Z/| is a pp
expansion of DL axiomatized by the axioms for distributive lattices plus the equations
x1 Ar(xy, 29, 23) R xy Axg Ay and x1 V r(xy, o9, x3) = 21 V 23 V 3.

As a consequence, DL[Z¢] coincides with the variety of relatively complemented distributive

lattices (see Example 7.4). X
Example 10.13 (Reduced commutative rings). A meadow is an algebra (A;+,-, — ()*,0,1)
which comprises a commutative ring (A4;+, -, —,0,1) and a unary operation ()* such that for
each a € A,

(a-a*)-a=a and a=a"
(see, e.g., [13]). As a consequence, the class of meadows forms a variety.

Prototypical examples of meadows arise by adding the operation of “taking weak inverses’
to fields. More precisely, a zero-totalized field is an algebra (A;+,-, —, ()*,0,1) comprising a

?

field (A;+,-,—,0,1) and a unary operation ()* defined as a* = wi(a) for each a € A, where
wi(a) is the weak inverse of a (see Example 3.16). Meadows were introduced in response to
the desire to construct an equational theory that captures the essence of fields. The following
representation theorem (see [12, Sec. 3.2]) shows that they fulfill this expectation.

Theorem 10.14. An algebra is a meadow if and only if it is isomorphic to a subdirect product
of zero-totalized fields.

We will prove the following.

Theorem 10.15. The variety of meadows is a pp expansion of the quasivariety of reduced
commutative 1ings.

Proof. Let f be the unary implicit operation of the quasivariety RCRing of reduced commu-
tative rings given by Theorem 8.18 and recall from the same theorem that f € ext,,(RCRing).
Moreover, let ()* be a unary function symbol. Then the language £ = Lrcring U {()*} is
an f-expansion of £Lgrcring, in which the role of g is played by ()*.

From Theorem 8.18 it follows that for each field A the function f4 is total and the algebra
A[Z/] coincides with the zero-totalized field obtained by adding the operation of “taking weak
inverses” to A. Therefore, letting Field and Field* be the classes of fields and of zero-totalized
fields, respectively, we obtain Field[£ ] = Field*. In view of Theorems 3.17 and 10.14, we also
have

RCRing = Q(Field) and Meadow = Q(Field"),

where Meadow is the variety of meadows. Lastly, recall that f € ext,,(RCRing) and that f4
is total for each A € Field. Together with the left hand side of the above display, this allows
us to apply Theorem 10.5, obtaining that Q(Field[£[]) is a pp expansion of RCRing. By
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applying in succession the equality Field[£] = Field* and the right hand side of the above
display, we obtain

Q(Field[£]) = Q(Field") = Meadow.

Hence, we conclude that Meadow is a pp expansion of RCRing. X

Example 10.16 (Hilbert algebras). An implicative semilattice is an algebra (A; A, —) which
comprises a semilattice (A; A) and a binary operation — such that for all a,b,c € A,

aNb<c <= a<b—c,

where < is the meet order of (A;A). The class of implicative semilattices forms a variety
(see, e.g., [77, pp. 105-106]) which coincides with the class of (A, —)-subreducts of Heyting
algebras (see [66, Thms. 5.1 & 9.1]). We will prove the following.

Theorem 10.17. The variety of implicative semilattices is a pp expansion of the variety of
Hilbert algebras.

Proof. First, let

Heyting_, = the class of (—)-reducts of Heyting algebras;
Heyting, _, = the class of (A, —)-reducts of Heyting algebras.

As the variety Hilbert of Hilbert algebras is the class of (—)-subreducts of Heyting algebras
and the variety ISL of implicative semilattices is the class of (A, —)-subreducts of Heyting
algebras, we have

Hilbert = Q(Heyting ,) and ISL = Q(Heyting, _,). (41)

Now, let f € ext,,(Hilbert) be the binary implicit operation given by Theorem 8.22.
Moreover, let A be a binary function symbol. Then the language £; = Lipers U {A} is an
f-expansion of Lyjpert, in which the role of gy is played by A.

Recall from Theorem 8.22 that for every Heyting algebra A with implication reduct A_,
the operation f4- is total and coincides with the meet operation of A. Therefore, the algebra
A_[¥] is defined and coincides with the (A, —)-reduct of A. Consequently,

Heyting ,[£] = Heyting, _,.

Lastly, recall that f € ext,,(Hilbert) and that f4 is total for each A € Heyting_,. Together
with the left hand side of (41), this allows us to apply Theorem 10.5, obtaining that
Q(Heyting_,[£/]) is a pp expansion of Hilbert. By applying in succession the above display
and the right hand side of (41), we obtain

Q(Heyting_,[£/]) = Q(Heyting, _,) = ISL.

Hence, we conclude that ISL is a pp expansion of Hilbert. X

Example 10.18 (Pseudocomplemented distributive lattices). A Heyting algebra A is said to
have depth < 2 when the chains in the poset of prime filters of A have size at most two. The
class of all Heyting algebras of depth < 2 forms a variety (see, e.g., [14, Thm. 4.1] and the
references therein). We will prove the following.
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Theorem 10.19. The variety of Heyting algebras of depth < 2 is a pp expansion of the
variety of pseudocomplemented distributive lattices.

Proof. Let PDL and Heyting, be the varieties of pseudocomplemented distributive lattices and
of Heyting algebras of depth < 2, respectively. We recall that the members of (HeytingQ)g%
are precisely the Heyting algebras whose lattice reduct is a finite Boolean lattice adjoined
with a new top element(see [83, Thm. 2]). It follows from the characterization of subdirectly
irreducible Heyting algebras (see, e.g., [7, Thm. 1X.4.5]) and the local finiteness of Heyting,
(see [79, 82]) that PDL® is the class of (A,V,—,0,1)-reducts of (Heyting,)®. Lastly, from

Theorem 2.16 it follows that
PDL = Q(PDL™) and Heyting, = Q((Heyting,)™). (42)

Now, let f € ext,,(PDL) be the binary implicit operation of PDL given by Theorem 8.25.
Moreover, let — be a binary function symbol. Then the language £ = £Lpp. U {—} is an
f-expansion of £Lpp(, in which the role of g is played by —.

Recall from Theorem 8.25 that for each A € PDL the function f# is total and coincides
with the implication — of the unique Heyting algebra with the same lattice reduct as A. As
PDLE is the class of (A,V,=,0,1)-reducts of (Heyting, ), this yields

PDLE[£s] = (Heyting,)S.

Finally, recall that f € ext,,(PDL) and that f4 is total for each A € PDL®. Together with
the left hand side of (42), this allows us to apply Theorem 10.5, obtaining that Q(PDLE[£/])
is a pp expansion of PDL. By applying in succession the above display and the right hand
side of (42), we obtain

Q(PDLE[£;]) = Q((Heyting,)%) = Heyting,.
Hence, we conclude that Heyting, is a pp expansion of PDL. X

The rest of this section is devoted to proving Theorems 10.3, 10.4, 10.5, 10.6, and 10.7.
We postpone the proof of Theorem 10.3 and begin by proving Theorem 10.4.

Proof. Proposition 9.3 yields that
KIZ7] = {B: B is an £r-algebra such that B, € K and
BE ¢¢(x1,... .00, g¢(x1,...,2,)) for each n-ary f € F}.

Since X axiomatizes K, for every £ z-algebra B we have that B[, € K if and only if B F ¥.
Therefore, from the above display it follows that the set of formulas

YSU{pr(x1, ... 20, gf(21, ... 2y)) ¢ f is an n-ary member of F}

axiomatizes K[£x|. To show that M = K[Z£] it is sufficient to prove that K[££] is closed
under S. As K is a universal class, Theorem 2.1(iii) allows us to assume that ¥ consists
of universal formulas. Together with the fact that each ¢(x1,..., 25, 9f(21,...,2,)) is a
conjunction of equations, this implies that K[££x| can be axiomatized by a set of universal

formulas. Therefore, K[££] is a universal class by Theorem 2.1(iii), and hence it is closed
under S. X
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We are now ready to prove Theorem 10.3.

Proof. We first prove that if K is a universal class or quasivariety, then so is M. It suffices to
show that for each class operator O € {U, Q} if K is closed under O, then S(K[££]) is closed
under O as well.

To this end, let O € {U,Q} and assume that K is closed under Q. Furthermore, let

N={AcK: f4is total for each f € F}.
We begin with the next observation.
Claim 10.20. We have K = O(N).

Proof of the Claim. As O € {U,Q} and K is closed under @, we known that K is a universal
class. Therefore, we can apply Theorem 8.4, obtaining that for each A € K there exists
B € K with A < B such that fB is total for each f € ext(K). Since F C ext,,(K) C ext(K)
by assumption, for each A € K there exists B € K with A < B such that f? is total for
each f € F. Together with the definition of N, this yields K C S(N). As O € {U,Q}, we
obtain K C O(N). On the other hand, from N C K and the assumption that K is closed under
O it follows that O(N) C K, whence K = O(N). X

Since K is closed under O by assumption, the definition of N allows us to apply Propo-
sition 9.10, obtaining O(N[Z£]) = S((O(N))[£#]). Together with Claim 10.20, this yields
O(N[Z£]) = S(K[£x]). Hence, S(K[££]) is closed under O, as desired.

Now, we prove the last part of (ii). Assume that K is a quasivariety. We need to show

that Mys C S(Kpsi[£5]). Let
Npsi = {A € K ¢ f2 is total for each f € F}.

We rely on the following observation.

Claim 10.21. We have K = ISP(Ngg).

Proof of the Claim. Since K is a quasivariety, it is closed under I, S, and P. Therefore, it
suffices to prove the inclusion K C ISP(Ngg ). To this end, consider A € K. In view of
the Subdirect Decomposition Theorem 2.9 there exist a family {A; : i € I} C Kyg and an
embedding h: A — [[,.; A;. By Theorem 8.4 for each i € I there exists B; € Ky with
A; < B; such that fBi is total for each f € ext(K). As F C ext(K) by assumption, this
guarantees that {B; : i € I} C Ngpg. Furthermore, from A; < B; for each i € I it follows
that [[,.; Ai < [l,c; Bi- Therefore, h can be viewed as an embedding of A into [],.; B.
Thus, we conclude that A € ISP(Ngg). X

Since the quasivariety K is closed under ISP, the definition of Ngg allows us to apply
Proposition 9.10, obtaining ISP(Nyg [£7]|) = S((ISP(Nxs))[£]). By Claim 10.21 this amounts
to ISP(Nyi[£L7]) = S(K[ZL£]). As M = S(K[£#]), we conclude that ISP(Ngg[£L7]) = M.

We are now ready to prove that Mgy C S(Kyg[£#]). Consider A € Mgg. Since M =
ISP(Npsi[£#]), there exist a family {A; : ¢ € I} C Ny and an embedding h: A —
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[1;c;(Ai[£F]). Observe that h can be viewed as a subdirect embedding h: A — [[..; pi[h[A]]

whose factors belong to M because for each i € I we have

pilh[A]] € S(A;[£F]) C S(Nps[£7]) C ISP(Nps[£5]) = M.
As A € My, this implies that there exists i € I such that the map p;oh: A — p;[h[A]] is an
isomorphism. Since p;[h[A]] < A;[£LF] and A; € Ngg, we obtain A € IS(Npy[£5]). Lastly,

applying in succession IS = SI, Proposition 9.8(i) for the case where @ = I, the fact that Nyg
is closed under I, and the inclusion Npg C Kgg, we conclude that

A€ HS(NRSIL%F]) = SH(NRSIL%F]) = S((H(NRSI))[«%F]) = S(NRSILEB?]) C S(KRSIL%F])»

as desired.

It remains to prove (iii). Assume that K is a variety and F C ext.,(K). By Theorem 2.1(i)
there exists a set of equations X that axiomatizes K. Then Theorem 10.4 yields that M is
axiomatized by

YU{ps(x1,. .. T, gf(T1,...,2,)) ¢ fis an n-ary member of F},

where ¢y is the conjunction of equations defining f € F. Consequently, M is axiomatized by
a set of equations. Thus, M is a variety by Theorem 2.1(i). X

Then we prove Theorem 10.5.

Proof. We detail only the case in which O = U, as the case in which @ = Q is handled
analogously. Accordingly, assume that K = U(N). As F C ext,,(K) and £r is an F-expansion

of Lk by assumption, the class S(K[£#]) is a pp expansion of K. Therefore, it only remains
to show that S(K[Z££]) = U(N[£%]). Since

N C {AcK: f4is total for each f € F}

by assumption, we can apply Proposition 9.10, obtaining U(N[Z#]) = S((U(N))[£#]). As
K = U(N), this amounts to UN[££]) = S(K[Z#]). X

It only remains to prove Theorem 10.6. The proof hinges on the next observation, in which
a nonconstant term is simply a term that is not a constant.

Proposition 10.22. Let M be a pp expansion of a class of algebras K induced by F and Lx.
Then the following conditions hold:
(1) for every constant c of M there exists a unary f. € exte,(K) such that f?“ﬁK is total and
A= fcmﬂfK (a) for all A € K[£%] and a € A;
(ii) for every nonconstant term t of M there exists f; € ext,,(K) such that t* = ftA[SEK for
each A € K[ZLF];
(iii) for every f € imp,,(M) there erists f, € imp,,(K) such that fA = f:”iK for each
A € K[Zx|. Furthermore, if f € ext,,(M), then f. can be chosen in ext,,(K).

Proof. By assumption M is a pp expansion of K induced by F and £z. Therefore, £ is an
F-expansion of k. Consequently, F C ext,,(K) and £z is of the form £k U {gs: f € F}.
This fact will be used repeatedly in the proof.
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(i): Let ¢ be a constant of M. Then ¢ belongs to £, which is an F-expansion of L. As
F-expansions are obtained by adding only functions symbols of positive arity, it follows that
c € Lk. Then the equation ¢(z,y) = y = c defines a unary f. € ext.,(K) with the desired
properties.

(ii): We proceed by induction on the construction of the nonconstant term ¢(z1, ..., x,).
In the base case, t = p(x1,...,x,) for a basic operation p of M. Therefore, p € L. As
Lr=%xU{ygs: f € F}, we have two cases: either p € Lk or there exists h € F C exty,(K)
such that p = g;,. In the first case, we let f; = (pA : A € K) and, in the second, f; = h. In

both cases, f; € ext,,(K) and t4 = ftA[SEK for each A € K[%#].

In the inductive step, t = p(t1,...,t,) for some m-ary p € L and terms ¢;(z1, ..., x,) of
M. By the inductive hypothesis there exist f,, fi,, ..., fi.. € ext,,(K) satistying the condition
in the statement for p,t1,...,%,, respectively. Define f; as the composition f,(fi,,-.-, fi,.)-
As fo, fros- s fr, € exty,(K), from Corollary 8.7 it follows that f; € ext,,(K) as well. Then

Al
consider A € K[%#] and a4,...,a, € A. By the inductive hypothesis p4 = f, ¢ and

tA = f:riK for each i < m. Therefore, for each i < m,
dom(f;[ff") = dom(p?) = A™ and dom(f:[ffK) = dom(t}) = A",

Together with f; = f,(ft,.- .., fi,.), this yields (a1, ..., a,) € dom(ff[gK) and

Al Al Al Al

ft %K(a’lv"wan):fp %K(ftl %K(alv'-wan)a'-'7ftm£K(a17"'aan))
= pA(tMay, ... an), ..t (a4, ... ay))
:tA(al,...,an).

Al
Hence, we conclude that t4 = f, uK.
(iii): Let f be an n-ary implicit operation of M defined by a pp formula
cp(:vl,...,xn,y):EIZl,...,zk|_|tjz3j, (43)
j<m

where each t; = s; is an equation of M in variables x1,...,2,, 21,..., 2, y. For each j <m

let @, (1, Tnyry1,y) and g, (21, ..., Tpyri1,y) be pp formulas of K defining the implicit

operations f;; and f, of K given by (i) and (ii).® Moreover, for each j < m define

= (T, Ty 21, 20, Y5 V) T (D1, Ty 20,y 20, Y, U5);
V=321, ., 25, U1, U |—| a;.
Jj<m

Claim 10.23. For all A € K[£x| and ay,...,a,,b € A,
AFp(ay,...,anb) <= Aly, Fi(a, ... a,,b).

Proof of the Claim. As ¢ is the formula in (43), we have A F p(ay,...,a,,b) if and only if

there exist ¢q,...,¢, € A such that t;“(al, ey Oy, Cly e, Cy b) = s;“(al, ey Oy, Cly e Cpy b)

6When t; is a constant ¢, we let the pp formula ¢;; be y =~ ¢ (see the proof of (i)) and think of f;, as a
constant operation of arity n + k + 1. Similarly for s; when it is a constant.
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for each j < m. In view of (i) and (ii), the latter is equivalent to the demand that there exist
c1,...,cx € A such that for each 7 < m,
Al Al
(ar,. .. an,c1, ... cp, b) € dom(f, <Y Ndom(fs, )
and

Al Al
I, M@y Ay Cry ey Oy b) = fay (@, Ay €Ly Oy B).
Since the formulas ¢;; and ¢, define f;; and f;;, respectively, the definition of «; guarantees

that this happens precisely when there exist ¢y, ..., ¢, € A such that
Aly, F3vi,... 0 |_| aj(ay, ... an,c1,. .., b,v5).

Jjsm
By the definition of 1 this amounts to the demand that Af¢, F ¥ (ay,...,a,,b). X

Recall that ¢ defines the implicit operation f of M. Therefore, ¢ is functional in M
and, in particular, in K[%£z]. Together with Claim 10.23, this yields that ¢ is functional
in {Aly, : A € K[£F]}. As 9 is equivalent to a pp formula by definition, we can apply
Corollary 3.11, obtaining that ¢ defines some f. € imp,,(S({Aly, : A € K[££]})). Then
recall that M is a pp expansion of K induced by F and £r and, therefore, F C ext,,(K).
Consequently, we can apply Proposition 9.6, obtaining that K = S({Aly, : A € K[£#]}).
Hence,

fe € imppp(S({A[i)K A eK[Zx]})) = imppp(K).
Since ¢ and 1 define f and f,, respectively, from Claim 10.23 it follows that for all
A € K[%x| and ay,...,a,,bE€ A,

(ay,...,a,) € dom(f4) and fA(ay,...,a,) =0
— AFp(a,...,a,b)
— Aly, Filar,...,an,b)

= (ay,...,an) Edom(ffkgK) and f:”iK(al,...,an) =b.

Hence, we conclude that f4 = f:‘ “k _ This concludes the proof of the first half of (iii).

Therefore, it only remains to prove that if f € ext,,(M), then f, € ext,,(K). Accordingly,
suppose that f € ext,,(M). Since we already proved that f. € imp,,(K), it suffices to show
that f. € ext(K). To this end, consider A € K and ay,...,a, € A. As K is the class of
ZLk-subreducts of M by Proposition 10.2, there exists B € M such that A < By, . Since
f €ext(M), Be M, and a,...,a, € A C B, there exists C € M such that B < C and
(ay,...,a,) € dom(f€). From C € M = S(K[£#]) it follows that there also exists D € K[£ ]
with C < D. Since A < BJy, and B < C < D e M and K is the class of £k-subreducts of
M, we have A < DT, € K. Moreover, by applying Proposition 8.1 to (ay, ..., a,) € dom(f©)
and C < D, we obtain (ay, ..., a,) € dom(fP). Hence,

D € K[27], (ai,...,a,) €dom(fP), and A< DJy, €K

Together with the first half of condition (iii), the first two items in the above display imply
(ay,...,a,) € dom(f*DL%K). As A < Dy, €K, we conclude that f, € ext(K). X
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We are now ready to prove Theorem 10.6.

Proof. Let My be a pp expansion of a pp expansion M; of K. We will prove that My is also a
pp expansion of K. First, as My is a pp expansion of K, there exist F; C ext,,(K) and an
Fi-expansion £x, of Lk such that My = S(K[££]). Similarly, as My is a pp expansion of
My, there exist Fy C ext,,(M;) and an Fr-expansion L, of Lz such that My = S(My[££,]).
Hence,

M1 = S(K[‘%]—‘l]) and M2 = S(Ml[«%}'g]) (44)
Since £z, is an Fi-expansion of £k and £z, an Fr-expansion of £, we may assume that

Lr =%LcU {gf f e fl} and Lr, =%Lx U {gf fe fg}

Consequently,
Lr, =L U{gr: f€FU{gs: f € R} (45)
As F, C ext,,(M;) and My is a pp expansion of K, Proposition 10.22(iii) guarantees that
for every f € F, there exists f, € ext,,(K) such that

A= ffr‘%K for each A € K[%x]. (46)
Since F; C ext,,(K) by assumption, the set
F=FRU{f.:feF}
is a subset of ext,,(K). Define g, = gy for each f € F; and consider the following F-expansion
of Lx:
Lr=%xU{ygs: feF}

Then the pair F and £z induces a pp expansion S(K[£#]) of K. To conclude the proof, it
will be enough to show that My = S(K[££]), for in this case My would also be a pp expansion
of K.

First, observe that
.%]:ZIfKU{gfZfEFl}U{gfth./—"Q}
=2k U{gs: f € P} U{gy : [ € Fo}
=%«U{gs: fe T}
- ‘%]:.
The above equalities are justified as follows. The first is (45), the second holds by the
definition of gy, for f € F;, the third by the definition of F, and the fourth by that of £ .
This establishes £z, = L. Since £z, and £ are, respectively, the languages of My and
S(K[£#]), we conclude that these classes have the same language.
In view of the right hand side of (44), in order to prove that My = S(K[£#]), it suffices to

show that
Ml[ifg] - S(K[g}']) and K[%}'} - Ml[g}'Q]. (47)

We split the proof of the above display in two claims.
Claim 10.24. We have M[££,] C S(K[Z]).
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Proof of the Claim. Consider A € M;[£r,]. By the definition of M;[££,] we have Alg, €
M;. As M; = S(K[Z£]) by the left hand side of (44), there exists B € K[£x] with
Alg, < B. Furthermore, Bly, € K because B € K[£7,]. Since S(K[££]) is a pp expansion
of K and By, € K, we can apply Proposition 9.6, obtaining some C' € K[£#] such that
Bly, < Clg,.

We will prove that A < C'. Since C € K[£#], this will yield A € S(K[£#]), thus concluding
the proof of the inclusion M;[£5,] C S(K[Z£#]). First, as Lr = Lr, = Lr, U{gs : [ € Fa},
we have L7 C L. Therefore, from C € K[£F] it follows that Cly, € K[£7]. By
applying Proposition 9.5 to B, Cly, € KIZ7]and Bly, < Clg, = (C’[fgﬁ)ffgw we obtain
B < CJg, . Together with AL%M1 < B and £y, = £ £, this yields A[iﬂ < Cly,, -

Since the language of A and C'is £r = £ U{gy : f € F»}, in order to prove that
A < C, it only remains to show that for all n-ary f € 75 and aq,...,a, € A,

g?(al,...,an) :g?(al,...,an). (48)
To this end, consider an n-ary f € F; and aq,...,a, € A. We will show that
g?(al, Ce Q) = fA&Ml (a1,...,an)
= fB(ay, ..., ap)
= ffri)“(al, ceey )
= f*chf*‘(al, Cey )
= gg(al, Cey Q)
= g?(al, ey Gy

The equalities above are justified as follows. To prove the first, recall that A € M,[£L%,
and f € F,, whence fA[if'V'l is a total function and gf(as,...,a,) = fA“f""l (ai,...,a,).
To prove the second, observe that the assumption that f € F, C imp(My), A[i,)M1 < B,
and A[$M1,B € M; allows us to apply Proposition 8.1 to the fact that (ai,...,a,) €
dom( M), obtaining (ay,...,an) € dom(fB) and f*'*i(ay,...,a,) = fB(as, ..., an).
The third equality follows from B € K[££] and (46). To prove the fourth, observe that
fi € imp(K), Blg,,Cly, € K, and Bly, < Clg,. Therefore, we can apply Proposi-

tion 8.1 to the fact that (ay,...,a,) € dom(ffriK), obtaining (ay,...,a,) € dom(ffk‘eK)
and f*BrﬂfK (a1,...,a,) = ff[g‘)" (aq,...,a,). The fifth holds because C € K[£#] and f. € F.
Lastly, the sixth equality holds because g, = g by assumption. This concludes the proof of

(48). Hence, we obtain A < C, as desired. X
Claim 10.25. We have K[££] C M;[£L£,].

Proof of the Claim. Consider A € K[£z]. Then A, € K and fA# is total for each f € F.
As Fy C F, this implies that the algebra Alq, [£7] is defined and belongs to K[£# | and,
therefore, to My as well. We will prove that fAriK[‘%f 1] is total for each f € Fs. To this end,
consider f € F,. By first applying (46) to Aly, [£r] € K[££] and then observing that
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Algy, is the Ly-reduct of Aly [£F ], we obtain

fAIffK[iffl] — fiAriK[‘%}—l])riK _ f:‘[i
The function on the right hand side of the above display is total because A € K[£#] and
f« € F (the latter by f € F» and the definition of F). Hence, we conclude that the left
hand side of the above display is also total, as desired. Since Aly, [£7] € M; and fA[ifK[‘%fl]
is total for each f € 5, the algebra (Aly, [£LF])[£F,] is defined and belongs to M;[£7,].
Therefore, in order to conclude the proof, it suffices to show that

A = (Al [Z7])[£R] (49)

To this end, recall that the language of these algebras is £ U {g; : f € F2} and their
universe is A. Moreover, recall that A € K[£z]. Then A = AJ, [£7] and Al,, € K.
Together with 7, C F, this yields that the £z -reduct of A is Al [£F]. On the other
hand, the £z -reduct of (Aly, [£F])[£F,] is also Aly, [£F] by construction. Therefore,
in order to prove the above display, it only remains to show that for all n-ary f € F; and
ai,...,a, € A,

K

Al (L5 )2
g?(al,...,an) :g; el D) IQ](al,...,an). (50)

Consider an n-ary f € F5 and aq,...,a, € A. We will prove that

g?(aflw'wan) = gﬁ(alv'”»an)

= £ ar-an)
_ :A@K[Sffll)kfx(ab e Ap)
:fA[gK[fEfl](al,...,an)

The above equalities are justified as follows. The first holds because gf, = g5 for each
f € JF3 by definition, the second because A € K[%x] and f, € F, the third because
Aly, = (Alg [L7]) g, the fourth follows from (46) and Aly, [£r5] € K[£F ], and the fifth
from f € F, and the definition of (Aly [£5])[£5,]. This concludes the proof of (50) and,
therefore, of (49). X

As (47) is an immediate consequence of Claims 10.24 and 10.25, we are done. X

The proof of Theorem 10.7 hinges on the following result, which describes how to lift
implicit operations to pp expansions.

Proposition 10.26. Let M be a pp expansion of a class of algebras K and f € imp(K) defined
by a formula ¢ of Lx. Let also f, be the partial function on M given by fo = (fA4< : A € M).
Then the following conditions hold:

(i) fo is defined by ¢ and belongs to imp(M);

(ii) if f € imp,,(K), then f, € imp,,(M);
(iii) if K is a universal class and f € ext(K), then f, € ext(M).
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Proof. Throughout the proof we assume that f is n-ary.

(i): Observe that Proposition 10.2 implies that A, € K for every A € M. Hence, f, is a
well-defined partial function on M. We show that f, is preserved by homomorphisms in M.
Consider a homomorphism h: A — B with A, B € M and let a4,...,a, € A be such that
(a,...,a,) € dom(fA). Since fA = f*'#«, we have

(a, ..., a,) € dom(fA1#).

As h: Aly, — Blg, is a homomorphism and f is an implicit operation of K, the above
display implies that

(h(ar), ..., h(ay)) € dom(fB'2<) and h(fY(ay,. .., an)) = fB'%%(h(ay), ... h(ay)).
Together with fA = fA'#x and fB = fB'« this yields

(h(ay), ..., h(a,)) € dom(fB) and h(fA(ar,...,a,)) = fB(h(a1),..., h(am)).

Hence, f, is preserved by homomorphisms, as desired.
Lastly, we will prove that for all A € M and aq,...,a,,b € A,

{ai, ..., a,) € dom(f2) and fA(ay,...,a,) = b
— (ay,...,a,) € dom(fAk) and fA (ay,... a,) =b
> Algy, Folay,...,an,b)
— AFp(a,...,a,b).

The first equivalence above holds by the definition of f,, the second because ¢ defines f, and
the third because ¢ is an Lk-formula. In view of the above series of equivalences, ¢ defines
fo- As f, is preserved by homomorphisms, we conclude that f, € imp(M).

(ii): Suppose that f € imp,,(K). Then we may assume that ¢ is a pp formula. It follows
from (i) that f, is defined by ¢ and belongs to imp(M), whence f, € imp,,(M).

(iii): Since M is a pp expansion of K, it is of the form S(K[£x]) for some F C ext,,(K) and
2Lx. Suppose that f € ext(K). To show that f, € ext(M), consider A € M and ay,...,a, € A.
Since M = S(K[£%]), there exists B[£z] € K[£x| such that A < B[Zf]. As B € K,
Theorem 8.4 yields C € K such that B < C and ¢ is total for every g € ext(K). In
particular,

C[%F] is defined and (a4, ..., a,) € dom(f©). (51)
By Proposition 9.5 from B < C'it follows that B[£x] < C[%%|. Then A < B[£7x| < C[%¥]
with C[£5] € K[£5] € M. Since C[%£]]y, = C, the definition of f, yields fo*7 = f©,
From (51) it follows that (ai,...,a,) € dom(f.c[‘ggﬂ) and, therefore, f, € ext(M). X

We now proceed to prove Theorem 10.7.

Proof. Let M = S(K[2#]) and £g = LxU{gs : f € G}. Define G = {fo : f € G— F}, where
fo = (fA2 : A € M). Since G C ext,,(K), Proposition 10.26 implies that G, C ext,,(M).
Consider the pp expansion S(M[£g,]) of M induced by G, and £g,, where £g, = £g and
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gf[ig'] = fAforall f € G—F and A[%g,] € M[%g,]. Since S(M[£g,]) is a pp expansion of
M, to prove that S(K[£g]) is a pp expansion of M, it suffices to show that

S(M[Zg.]) = S(K[Zg]). (52)

For the inclusion from left to right of (52) it is enough to show that M[Zg,] C S(K[£g]).
To this end, consider A € M[£g,]. Then A, € M = S(K[£#]). Consequently, there exists
B € K[Z#] such that A[,,. < B. As G C ext(K), Proposition 9.6 yields that K is the class
of subreducts of K[£g]. Together with B[y, € K (which holds because B € K[£#]), this
entails that there exists C[£g]| € K[£g] such that B, < C.

We will prove that A < C[%g|. First, from £k C L7, Aly, < B and By, < C it follows
that Al < C. Therefore, it only remains to show that g}“(al, Cey Q) = gf[gg](al, Cey Q)
for all n-ary f € G and aq,...,a, € A. We have that

g?(al,...,an) = fAMay, ..., a)
= fAriK(al,...,an)
= fc(al,...,an)
Cl%g]

=g; “(a1,...,an).

The first equality above holds because A € M[£g,] and the second is a consequence of the
definition of f,. The third equality follows from Proposition 8.1 because A[y, < C, and the
last from the interpretation of g5 in K[%g]. Therefore, A < C[¥%g] € K[£g]. We conclude
that M[%g,] C S(K[£g]), as desired.

We now prove the inclusion from right to left of (52). It suffices to show that K[Zg] C
M[%g.]. To this end, consider A € K[%g]. Then f4#« is a total function for every f € G.
In particular, we have that f4'# is total for every f € F because F C G. It follows that
Aly, € K[£F] €M and f.Ar“('ff is total for every f € G —F. Then A, [£g,] is defined and
belongs to M[£g,]. So, it only remains to show that A = A[, [£g,]. Clearly, A and Ay,
have the same £ z-reduct. Moreover, for every f € G — F we have that

where the first equality is a consequence of the interpretation of g; in K[%g], the second
follows from the definition of f, and the fact that (Afg,)[¢, = Aly,, and the last one from
the interpretation of gy in M[%g,]. Thus, K[£g] C M[%g.], as desired. X

11. THE BETH COMPANION

Recall that the strong Beth definability property is the demand that every implicit
operation be interpolated by a set of terms (see Definition 5.3). We shall now extend the
idea of interpolation to accommodate for situations in which the implicit operation and the
set of terms belong to different classes of algebras.

Definition 11.1. Let K and M be a pair of classes of algebras with £k C £\ such that the
Zk-reducts of M belong to K. We say that an n-ary implicit operation f of K is
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(1) interpolated in M by a set of n-ary terms {¢; : i € I'} of M when for all A € M and
(a,...,a,) € dom(f*«) there exists i € I such that

fA“gK(a'h . 7an) = t?(alv Ce ,an);

(ii) interpolated in M by a set of n-ary partial functions {g; : i € I'} of M when for all A € M
and (ay,...,a,) € dom(fA#«) there exists i € I such that

(a1,...,a,) € dom(g?) and f%(ay,...,an) = g(ar,..., an).

Remark 11.2. When K = M, part (i) of the above definition specializes to the familiar demand
that the implicit operation f be interpolated by the set of terms {¢; : i € I}. Notice that
part (ii) subsumes part (i), for term functions can be viewed as implicit operations (see
Example 3.8). However, we opted for splitting the definition in two halves for the sake of
clarity. Lastly, we remark that the above definition applies to the situation where M is a pp
expansion of K because in this case £k C £y and the £Lk-reducts of M belong to K (see
Proposition 10.2). X

Recall that the notion of a pp expansion was introduced to address the following question:
is it possible to expand a given class of algebras K by introducing new function symbols for
some of its implicit operations so that

(i) every implicit operation of K becomes interpolable by a set of terms in the resulting
expansion M, and
(ii) the basic desiderata (D1) and (D2)" are met?

This idea is made precise by the following definition.

Definition 11.3. A pp expansion M of a class of algebras K is said to be a Beth companion
of K when every implicit operation of K is interpolated in M by a set of terms of M.

The aim of this section is to prove a triplet of results on Beth companions. The first
governs the interplay between pp expansions and Beth companions.

Theorem 11.4. Let K be a universal class, My a pp expansion of K, and My a pp expansion
of My. Then the following conditions hold:

(i) if My is a Beth companion of K, then My is a Beth companion of K;

(i) if My is a Beth companion of My, then My is a Beth companion of K.

In general, a quasivariety K need not possess a Beth companion (see Section 14). However,
when a Beth companion of K exists, the above result yields a description of a concrete Beth
companion of K.

Corollary 11.5. Let K be a universal class, F = ext,,(K), and Lx an F-expansion of L.
Then K has a Beth companion if and only if S(K[£#]) is a Beth companion of K.

The second result connects Beth companions with the strong Beth definability and the
strong epimorphism surjectivity properties as follows.

See the first paragraph of Section 9.



THE THEORY OF IMPLICIT OPERATIONS 7

Theorem 11.6. The following conditions are equivalent for a pp expansion M of a universal
class K:
(i) M is a Beth companion of K;
(ii) M has the strong Beth definability property;
(iii) M has the strong epimorphism surjectivity property;
(iv) every member of imp,,(K) is interpolated in M by a set of terms of M.
In addition, when K is a quasivariety, we can add the following equivalent condition:

(v) every member of imp,,(K) is interpolated in M by a single term of M.

The last result in this section states that, in the setting of quasivarieties, Beth companions
are essentially unique (when they exist). To make this precise, we adapt the notion of term
equivalence (see, e.g., [11, p. 131]) to expresses that two pp expansions of K in possibly
distinct languages are essentially indistinguishable. Let M; and My be a pair of pp expansions
of a class of algebras K. For i = 1,2 let T; be the set of terms of M; with variables in
{z, :n € N}. Let p: Lm, — T1 be a map that preserves the arities. For each £y,-algebra
A let p(A) be the £y,-algebra with universe A such that f*(4) = p(f)4 for each function
symbol f in £Ly,. Similarly, given an arity-preserving map 7: £y, — T and an £y,-algebra
B, we define an £y, -algebra 7(B). We say that M; and My are faithfully term equivalent
relative to K if there exist arity-preserving maps 7: Ly, — 12 and p: Ly, — 17 such that
7(f) = f(x1,...,2,) and p(f) = f(z1,...,x,) for each n-ary function symbol f in £k, and
for all A € M; and B € M5 we have

(i) p(A) € My;

(i) 7(B) € My;
(iii) Tp(A) = A;
(iv) pr(B) = B.

In view of the following theorem, from now on, we will talk about the Beth companion of

a quasivariety.

Theorem 11.7. All the Beth companions of a quasivariety K are faithfully term equivalent
relative to K.

Before proving these results, we shall illustrate their applicability by describing Beth
companions of familiar classes of algebras.

Example 11.8 (Beth companions). Our aim is to prove the next result, which describes Beth
companions of some familiar classes of algebras. Further examples will be given once sufficient
portions of the theory of Beth companions will become available. The curious reader may
consult Table 1, which summarizes compactly all the examples considered in this work.

Theorem 11.9. The following conditions hold:

(i) the variety of Abelian groups is the Beth companion of the quasivariety of cancellative
commutative monoids;

(i) the variety of Boolean algebras is the Beth companion of the variety of bounded distributive
lattices;
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(iii) the variety of relatively complemented distributive lattices is the Beth companion of the
variety of distributive lattices;

(iv) the variety of implicative semilattices is the Beth companion of the variety of Hilbert
algebras;

(v) the variety of Heyting algebras of depth < 2 is the Beth companion of the variety of
pseudocomplemented distributive lattices;

(vi) every universal class with the strong epimorphism surjectivity property is a Beth com-
panion of itself.

Proof. (i): By Theorem 10.10 the variety AG of Abelian groups is a pp expansion of the
quasivariety CCMon of cancellative commutative monoids. Recall from Example 6.3 that
AG has the strong epimorphism surjectivity property. Hence, we can apply Theorem 11.6,
obtaining that AG is the Beth companion of CCMon.

(ii)—(v): Analogous to the proof of (i). For (ii), use Theorems 10.12(ii) and 7.5. For (iii),
use Theorems 10.12(i) and 7.5. For (iv), use Theorem 10.17 and the fact that the variety of
implicative semilattices has the strong epimorphism surjectivity property (see [42, Props. 81
& 82]). For (v), use Theorem 10.19 and the fact that the variety of Heyting algebras of
depth < 2 has the strong epimorphism surjectivity property (see [90, Thm. 8.1(3)]).

(vi): Consider a universal class K with the strong epimorphism surjectivity property. In
view of Example 10.8, the class K is a pp expansion of itself. Therefore, we can apply
Theorem 11.6, obtaining that K is a Beth companion of itself. X

Remark 11.10. The following shows that the hypothesis that K is a quasivariety in The-
orem 11.7 cannot be replaced with the requirement that K is a universal class. Let
A = (A;A,V,0,1) be the two-element bounded lattice and K = U(A). Since A is fi-
nite and has no proper subalgebras, from Theorem 2.2 and Proposition 2.14 it follows that
K=TU(A) =ISP,(A) = I(A). Therefore, every member of K lacks proper subalgebras because
it is isomorphic to A. Therefore, for all B < C € K we have dx(B,C) = dx(C,C) = C.
Together with Proposition 6.6, this yields that K has the strong epimorphism surjectivity
property. Therefore, Theorem 11.9(vi) implies that K is a Beth companion of itself.

We will show that there exists another Beth companion M of K such that K and M are not
faithfully term equivalent relative to K. Since K is a class of bounded distributive lattices,
it follows from Theorem 3.20(ii) that taking complements yields a unary implicit operation
f of K defined by a conjunction of equations. As f2 is total for every B € [(A) = K, we
have f € ext.,(K). Let £y = Lk U{~} be an f-expansion of Lk and M = S(K[£/]) the pp
expansion of K induced by f and £;. As every member of K lacks proper subalgebras, so
does every member of K[£/], and hence M = K[£/]. Together with K =I(A) and the fact
that A[£/] is defined (because f4 is total), this yields M = I(A[£/]). By arguing as above
we obtain that M has the strong epimorphism surjectivity property. Therefore, Theorem 11.6
implies that M is a Beth companion of K.

It only remains to show that M and K are not faithfully term equivalent relative to K.
Suppose the contrary, with a view to contradiction. Then let 7: £x — T} and p: £y = 15
be the maps witnessing the faithful term equivalence, where T7 and T3 are the sets of terms
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of £; and £k, respectively, with variables in {z,, : n € N}. Recall that K = I(A) and
M = [(A[Z%}]). Therefore, A[£f] = p(A) because p(A) € M. Let h: p(A) — A[£Ly] be an
isomorphism. For every a € A we have

H(p(~)A(@) = h(="Wa) = ~A%h(a) = FA(h(a)

Consequently, there exists a term t(x) of K (namely, p(—)) such that h(t4(a)) = fA(h(a))
for every a € A. Since fA(h(a)) is the complement of h(a) in the two-element bounded
lattice A, we have f4(h(a)) # h(a) for every a € A. Therefore, for every a € A we obtain
h(t2(a)) # h(a), and hence t4(a) # a. From A = {0,1} it follows that t4(1) = 0 and
t4(0) = 1. Since all the basic operations of A are order preserving in each component, t4 is
order preserving in each component as well. Therefore, t4(0) < t4(1), a contradiction with
the fact that t4(1) = 0 and t4(0) = 1. Hence, K and M are not faithfully term equivalent
relative to K. In fact, the same argument shows that K and M are not even term equivalent
(see, e.g., [11, p. 131] for the definition of term equivalence). X

Now, we turn our attention to proving Theorem 11.4.

Proof. Recall from the assumptions that M; is a pp expansion of K and that My is a pp
expansion of M. Therefore, M is also a pp expansion of K by Theorem 10.6. This fact will
be used repeatedly in the proof.

(i): Suppose that M; is a Beth companion of K. We will prove that so is My. Since My is a
pp expansion of K, it suffices to show that every implicit operation of K is interpolated in
M; by a set of terms of My. Accordingly, consider an n-ary f € imp(K). As M; is a Beth
companion of K, there exists a family {¢; : i € I'} of M; that interpolates f in M;. Since M,
is a pp expansion of My, we know that {t; : i € I'} is also a set of terms of My. We will prove
that it interpolates f in Ms.

To this end, consider A € My and a4, ...,a, € A such that (ai,...,a,) € dom(fArffK).
From £y C 2Ly, it follows that (A[SBMl)[SEK = Aly,. Therefore,

fA[,%K — f(Argng)L%K and <a1" N ’an> e dom(f(AL%Ml)riK)

We will prove that A[$M1 € M;. Recall from the assumptions that K is a universal class.
Therefore, so is its pp expansion M; by Theorem 10.3(i). Together with the assumption that
M, is a pp expansion of My, this allows us to apply Proposition 9.6, obtaining A [5_,3M1 € My, as
desired. Together with the above display and the assumption that {¢; : ¢ € I} interpolates f

in My, this implies that there exists ¢ € I such that f4/« (a1,...,a,) = t? i (a1,...,a,) =
tA(ay, ..., a,).

(ii): Assume that My is a Beth companion of M;. We will prove that My is a Beth companion
of K as well. As in the previous case, it suffices to show that every implicit operation of K is
interpolated in My by a family of terms of M. Accordingly, consider an n-ary f € imp(K).
By Proposition 10.26 there exists g € imp(M;) such that g4 = f*'#« for each A € M.
Observe that g is interpolated in My by a family {¢; : i € I} of terms of My because My is a
Beth companion of M;. We will prove that the same family interpolates f in M. To this
end, consider A € My and ay, ..., a, € A such that {(aj,...,a,) € dom(f*/#k). Since K is
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a universal class, Theorem 10.3(i) implies that M; is a universal class as well. As A € My
and M, is a pp expansion of M; we have AL%MI € M; by Proposition 9.6. Furthermore,
(Alg, e, = Alg, because Ly C Ly, Therefore,

Al Alg )l Al
g sty — f( lazny stc fA% and (ay,...,a,) € dom(g L"3“"1).

As {t; : i € I} interpolates g in My, the above display guarantees the existence of some i € T
such that f4'c(ay,... a,) = gAkng (ai,...,an) =tA(ay, ..., a,). D

Then we prove Corollary 11.5.

Proof. 1t suffices to prove the implication from left to right, as the other one is straightforward.
Accordingly, let M be a Beth companion of K.

Claim 11.11. The class S(K[£#]) is a pp expansion of K which, moreover, is term equivalent
to a Beth companion of K.

Proof of the Claim. Since M is a pp expansion of K, we may assume that it is induced by
some G C ext,,(K) and G-expansion £g of Lk. As F = ext,,(K) by assumption, we have
G C ext,,(K) = F. Then there exists an F-expansion £’ of the form LgU{gs: f € F —G}.
Since G C F and £g C %%, Theorem 10.7 implies that S(K[£%]) is a pp expansion of
M = S(K[£g]). Together with the assumption that M is a Beth companion of K, this allows
us to apply Theorem 11.4(i), obtaining that S(K[£%]) is a Beth companion of K as well.
Lastly, the definition of £’ guarantees that the classes S(K[££]) and S(K[£/]) are term
equivalent. X

Recall that S(K[££]) is a pp expansion of K by assumption. To prove that it is also a
Beth companion of K, consider some f € imp(K). By Claim 11.11 the class S(K[£#]) is term
equivalent to a class in which f is interpolated by a set of terms. By the definition of term
equivalence, this guarantees that f is also interpolated in S(K[££]) by a set of terms. X

Next we prove Theorem 11.6.

Proof. Let M be a pp expansion of a universal class K of the form S(K[£#]). Theorem 10.3(i)
implies that M is a universal class. So, conditions (ii) and (iii) are equivalent by Theorem 6.5.
Furthermore, the implication (i)=-(iv) is straightforward.

(iv)=(ii): To prove that M has the strong Beth definability property, it suffices to show
that every implicit operation of M defined by a pp formula is interpolated by a set of terms.
For suppose that this is the case. As M is an elementary class, we can apply Propositions 5.2
and 5.4, obtaining that M has the strong Beth definability property, as desired. Then consider
an n-ary f € imp,,(M). By Proposition 10.22(iii) there exists g € imp,,(K) such that

fA = g4 for each A € K[LF]. (53)

Applying (iv) to g € imp,,(K) yields a set {t; : 7 € I} of terms of M that interpolates g
in M. We will show that {t; : i« € I} interpolates f as well. To this end, consider A € M
and ay,...,a, € A such that (ay,...,a,) € dom(f4). Since A € M = S(K[£#]), we have
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A < B for some B € K[£z]. As f € imp(M) and A, B € M are such that A < B, from
Proposition 8.1 and {(ay, . .., a,) € dom(f4) it follows that

(a1,...,a,) € dom(fB) and f(ai,...,a,) = fB(ay,..., an).

Furthermore, by applying (53) to the assumption that B € K[£#], we obtain fB =g
Together with the above display, this yields

Bly,

(a1, a,) € dom(g®I#) and fA(ay,....a,) = g% (ar,...,an).

Since {t; : i € I} interpolates g in M, from the left hand side of the above display and
B € K[%7] C M it follows that there exists i € I such that ¢®'#(ay, ..., a,) = tB(ay, ..., ay).
Together with the right hand side of the above display and the fact that A < B, this yields

fA(al, ey Gp) = gBL“fK(al, Cey Q) = tf(al, Cey Q) = tf‘(al, Ce Q).

Hence, we conclude that {¢; : ¢ € I} interpolates f, as desired.

(il)=(i): Suppose that M has the strong Beth definability property and consider an n-ary
f € imp(K). We need to prove that f is interpolated in M by a set of terms of M. In view
of Proposition 10.26, there exists g € imp(M) such that g4 = A% for each A € M. As M
has the strong Beth definability property, the implicit operation g is interpolated by a set of
terms {t; : © € I} of M. We will show that this family interpolates f in M as well. Consider
AeManday,...,a, € Asuch that (ay,...,a,) € dom(f*«). Together with g4 = f*1#«,
this yields

(a1,...,a,) € dom(g?) and f%(ay,...,a,) = g*(ar, ..., an).

Since g is interpolated by {t; : i € I}, there exists i € I such that g4(ay,...,a,) =
tA(ay, ..., a,). By the right hand side of the above display this amounts to f*#« (ay, ..., a,) =
tA(ai,...,a,). Hence, we conclude that f is interpolated by {t; : i € I} in M.

Next we prove the last part of the statement. To this end, in the rest of the proof, we
assume that K is a quasivariety.

(v)=(iv): Straightforward.

(ii)=(v): Consider f € imp,,(K). In view of Proposition 10.26, there exists g € imp,,(M)
such that g4 = f4#« for each A € M. Observe that M is a quasivariety by Theorem 10.3(ii).
Together with the assumption that M has the strong Beth definability property and ¢g €
imp,,,(M), this allows us to apply Proposition 5.6, obtaining that g is interpolated by a single
term ¢t of M. An argument analogous to the one detailed in the proof of the implication
(ii)=-(i) shows that ¢ interpolates f in M as well (the only difference is that, in this case, the
role of the family {¢; : i € I'} is taken over by the single term t). X

It only remains to prove Theorem 11.7. The proof hinges on the next observation.

Remark 11.12. The strong connection provided by a faithful term equivalence guarantees
the preservation of many important properties. Let M; and My be two pp expansions of K
that are faithfully term equivalent relative to K and suppose that the term equivalence is
witnessed by 7: £y, = T and p: £Lu, — T1. Then it is straightforward to verify that the
following conditions hold:
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(i) if h: A — B is a homomorphism between £y, -algebras, then h: p(A) — p(B) is a
homomorphism between £y,-algebras;
(ii) if A, B are £y,-algebras such that A < B, then p(A) < p(B);
(iii) if A € My, then Aly, = p(A)lq,;
(iv) if My and My are quasivarieties, then Cony, (A) = Conwm,(p(A)) for every A € My;
(v) if My is a universal class, quasivariety, or variety, then so is Ma;
(vi) My is a Beth companion of K if and only if My is a Beth companion of K.

Since the roles of p and 7 are interchangeable, M; and My may be swapped in the conditions
above. X

We are now ready to prove Theorem 11.7.

Proof. Let M7 and My be a pair of Beth companions of a quasivariety K. We will prove that
M; and M, are faithfully term equivalent relative to K. For i = 1,2 let F; C ext,,(K) be such
that M; = S(K[Z£,]). We may assume that

$;1:$KU{gf:f€F1} and g_rz:gKU{gflfG‘Fz}.

Then let T; be the set of terms of £z, with variables in {x,, : n € N}. Since K is a quasivariety,
Theorem 11.6 implies that for every n-ary f € imp,,(K) and i = 1,2 there exists an n-ary
term F;(f) € T; that interpolates f in M;. Therefore, for every n-ary f € imp,,(K), A € M;
with i = 1,2, and a4,...,a, € A,

(ai, ..., a,) € dom(fA ) implies fAx(ay, ..., a,) = Fi(f)*(ay,. .., an). (54)

Define 7: L5 — Ty and p: Lz, — T by setting 7(f) = f(xy1,...,x,) and p(f) =
f(z1,...,x,) for every n-ary f € Lk, and

7(95n) = Fo(fi) and  plgp,) = Fi(f2)

for each f; € F; and f, € F5. We proceed to show that 7 and p witness that M; and My
are faithfully term equivalent relative to K. Let F = F; U F;, and let £ be an F-expansion
of Lk such that Lx,%Lr, C Lr. Recall that F = F, U Fy C exty,(K) by assumption.
Therefore, Theorem 10.7 implies that S(K[£]) is a pp expansion of both M; = S(K[£#,])
and My = S(K[Z£,]). To verify conditions (i) and (iii) in the definition of faithful term
equivalence, consider A € M;. We need to prove that p(A) € My and 7(p(A)) = A. Since
S(K[Z#]) is a pp expansion of My, Proposition 10.2 implies that A is an £z -subreduct
of S(K[Z£]). As every member of S(K[£#]) is a subalgebra of a member of K[£x|, it
follows that there exists B € K[££] such that A < BJy . Since My is a universal class by
Theorem 10.3(i) and S(K[£#]) is also a pp expansion of My, Proposition 10.2 implies that
Bly, €M,

We now show that p(A) € My. Observe that My is closed under subalgebras because it
is a pp expansion of K. Hence, it is sufficient to prove p(A) < B[SEI2 because B [$f2 € M.
Since A < By, , from Remark 11.12(iii) it follows that

p(A) [y, = Alg, < (stefl)fng = Bly, = (nyfz)fw- (55)
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Therefore, it only remains to show that gJ’i(A)(
g €Ly, —%xand ai,...,a, € A. We have

A1y ..y Qp) =g, ai,...,ay,) for all n-ary

(A) (

95y ay, ... an) = plgp)*an, ..., a,)

a1,y p),

where the first two equalities hold by the definitions of p(A) and p(gy), the third holds because
A < Bly, , the fifth because (Bly, )4, = (Blg, )l4,, and the last because B € K[£F]
implies Bly, € K[£g]. The fourth equality follows from (54) because (Blgy, )y, =

(Blg,, ), and Bly, € K[Lg] imply (a1,...,a,) € dom(f(Bhffl”ffK). We conclude that
p(A) < Bly, , and hence p(A) € My.
Next we prove that 7(p(A)) = A. By Remark 11.12(iii) we obtain

7(p(A)) L%K =p(A) fggK = Afny-

Therefore, it remains to show that g;(p (4)

ay,...,a, € A. Then

= g}“ for every n-ary g € £ — Lk. Let

g7 ay, ... a,) = 1(g5)" Dy, ..., an)
= F2(f)p(A)<alv )
= B(H)" 7 (@, ... an)
:f(Bfgfo)F K(al, 7an)
_ f(Brggfl)rzK(al’ )
_ gfrgﬁ (. .a)

where the first equality follows from the definition of 7(C') for an £ z,-algebra C, the second
from the definition of 7(gy), the third holds because p(A) < By -, s we established above,
the fifth because (Bly, )lg, = (Blg,, )y, the sixth because B € K[£#] implies By, €
K[£7], and the last because A < Blgy, . The fourth equality follows from (54) because
(Bly,)la = (Bly, g, and Bly, € K[%Lx] imply (ar,...a,) € dom(f%'#7)1#¢). We
conclude that 7(p(A)) = A.

Thus, conditions (i) and (iii) in the definition of faithful term equivalence hold. The
proof that conditions (ii) and (iv) hold is analogous. Since 7(f) = f(xy,...,z,) and
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p(f) = fxy, ..., x,) for every n-ary f € £y, we conclude that M; and My are faithfully term
equivalent relative to K. X

12. STRUCTURE THEORY

In this section, we address the following question: what do we gain by moving from a
quasivariety to its Beth companion? We will answer it by showing that not only does the
Beth companion of a quasivariety K inherit a significant portion of the structure theory of K,
but its structure theory is often much richer than that of K. To this end, it is convenient to
restrict our attention to the pp expansions that respect the structure of congruence lattices,
which we term congruence preserving. More precisely, recall that if M is a pp expansion
of a quasivariety K, then M is a quasivariety and K the class of £-subreducts of M (see
Theorem 10.3(ii) and Proposition 10.2).

Definition 12.1. A pp expansion M of a quasivariety K is said to be congruence preserving
when Conpm(A) = Conk(Alg,) for every A € M.

Remark 12.2. Let M be a pp expansion of a quasivariety K. We will prove that M is congruence
preserving when Cong(Afg, ) € Conu(A) for every A € M. To this end, it suffices to show
that the reverse inclusion Cony(A) C Conk(Al[y, ) always holds for each A € M. Consider
¢ € Conu(A). The inclusion £k C £y guarantees that 0 is a congruence of A[,, . Moreover,
since 6 is an M-congruence of A, we have A/0 € M. Thus, (A, )/0 = (A/0)]4, € M[g, C K.
Consequently, we conclude that § € Conk(Alg, ). X

Although pp expansions of quasivarieties need not be congruence preserving in general
(see [27, Thm. 2.1]), the next result explains why most concrete pp expansions are indeed
congruence preserving. To this end, it is convenient to introduce the following concept.

Definition 12.3. A pp expansion M of a class of algebras K is said to be equational when it is
faithfully term equivalent relative to K to a pp expansion of K induced by some F C ext.,(K)
and £Lr.

We also recall that a quasivariety K has the relative congruence extension property when
for all A < B € K and 6 € Conk(A) there exists ¢ € Cong(B) such that 0 = ¢[,. When K
is a variety, we simply say that K has the congruence extension property.®

Theorem 12.4. Let M be a pp expansion of a quasivariety K and assume that one of the
following conditions holds:

(i) M is equational;

(ii) K has the relative congruence extension property.

Then M is congruence preserving.

We say that a Beth companion is congruence preserving when it is a congruence preserving
pp expansion. Similarly, we call a Beth companion equational when it is an equational pp

8Although we will not rely on this fact, we remark that the relative congruence extension property persists
in pp expansions of quasivarieties (see [27, Prop. 3.18]).
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expansion. It is an immediate consequence of Remark 11.12(vi) that a Beth companion of a
class of algebras K is equational if and only if it is faithfully term equivalent relative to K to
a Beth companion of K induced by some F C ext,,(K) and £x. In view of Theorem 12.4, all
the Beth companions considered so far are congruence preserving as we proceed to illustrate.

Example 12.5 (Congruence preserving Beth companions). Notice that all the Beth companions
of varieties mentioned in Theorem 11.9 are equational (in fact, they are all induced by sets of
implicit operations defined by conjunctions of equations). Therefore, Theorem 12.4 guarantees

<]

that they are congruence preserving. X

As the following example shows, being equational is not a necessary condition for a Beth
companion to be congruence preserving.

Example 12.6 (Congruence preserving and not equational Beth companion). For every n € Z*
let A, be the unique Heyting algebra whose lattice reduct is obtained by adding a new
maximum 1 to the powerset lattice (P({1,...,n});N,U). Then for every n > 3 the variety
V(A,) admits a Beth companion that is congruence preserving and not equational, as shown
in [27, Thm. 3.3]. Notably, the variety V(A,,) can be equivalently described as the variety of
Heyting algebras of depth < 2 (see Example 10.18) satisfying the bounded width < n axiom
in the variables xy, ..., x,.1, namely, the equation

n+1

i=1 i

We have seen in Section 4 that the amalgamation property allows us to eliminate existentials

in certain situations. An instance of this phenomenon is described in the following theorem.

Theorem 12.7. Let K be a quasivariety with the amalgamation property. Then every pp
expansion of K is equational, congruence preserving, and has the amalgamation property.

The congruence preserving pp expansions of a quasivariety K inherit a substantial portion of
the structure theory of K, namely, the one related to the structure of lattices of K-congruences.
The next concepts are instrumental to make this idea precise. Let K be a quasivariety. A
congruence equation is a formal equation in the binary symbols A, V, and o. A congruence
equation is valid in an algebra A relative to K when it becomes true whenever we interpret
the variables of the equation as K-congruences of A, and for arbitrary binary relations a and
B on A, we interpret a A3, aV 3, and ao 8 as aNf, Cg‘é(auﬁ), and « o (3, respectively. We
say that a congruence equation is valid in K when it is valid relative to K in every member of
K [99, 108] (see also [74]). For instance, a quasivariety K is relatively congruence distributive
precisely when the congruence equation (x Vy) A (xV z) = xV (y A z) is valid in K. Similarly,
a variety K is congruence permutable if and only if the congruence equation r oy = yo x is
valid in K.

Theorem 12.8. Let M be a congruence preserving pp expansion of a quasivariety K. Then
every congruence equation valid i K s valid in M.

Proof. Immediate from the definitions of a congruence preserving pp expansion and of a
congruence equation. X
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In addition, congruence preserving pp expansions preserve and reflect the property of
“being relatively (finitely) subdirectly irreducible” (cf. Theorem 10.3(ii)) and preserve the
property of “being a variety”. We recall that the latter fails for arbitrary pp expansions (see
[27, Thm. 2.1]). More precisely, we will prove the following.

Theorem 12.9. Let M be a congruence preserving pp expansion of a quasivariety K. Then
MRFSI - {A E M : A[$K e KRFSI} a/nd MRSI - {A E M : Aer 6 KRSI}'
Moreover, if K is a variety, then M is a variety.

As we mentioned, the aim of this section is to explain what we gain by moving from
a quasivariety to its Beth companion. Our main result states that not only does every
congruence preserving Beth companion of a quasivariety K inherit a significant portion of the
structure theory of K (see Theorems 12.8 and 12.9), but it often gains remarkable properties
in comparison to those of K. More precisely, we will establish the following.

Theorem 12.10. Let K be a relatively congruence distributive quasivariety for which Kypg s
closed under nontrivial subalgebras. Then every congruence preserving Beth companion M of
K is an arithmetical variety with the congruence extension property such that Myg s closed
under nontrivial subalgebras.

In view of Theorem 12.10, under reasonable assumptions, the structure theory of a
congruence preserving Beth companion M of a quasivariety K enhances that of K as follows:
M turns out to be a variety (as opposed to a quasivariety) which, moreover, is arithmetical (as
opposed to relatively congruence distributive only) and possesses the congruence extension
property.

Let us illustrate the effect of Theorem 12.10 in the setting of filtral quasivarieties. A variety
K is said to be discriminator when there exist a class of algebras M and a quaternary term ¢
such that K = V(M) and #4 is the quaternary discriminator function on A for every A € M
[22, 107] (see also [21, Sec. IV.9]). Examples of discriminator varieties include the variety
of Boolean algebras and for each n € N the variety of rings satisfying the equation = ~ x™
(see, e.g., [20, pp. 179-180]). The importance of discriminator varieties derives from the
fact that they admit a general representation theorem in terms of Boolean products with
subdirectly irreducible factors [21, Thm. IV.9.4] (see also [104]). While every discriminator
variety is filtral (see, e.g., [10, p. 101]), the converse need not hold in general: for instance,
while the variety of (bounded) distributive lattices is filtral, it is not a discriminator variety.
However, its Beth companion, the variety of Boolean algebras, is a discriminator variety.
From Theorem 12.10 we will infer that this is true in general.

Corollary 12.11. Every Beth companion of a relatively filtral quasivariety is a discriminator
variety.

Before proving these results, let us illustrate the applicability of Theorem 12.10 with a
more concrete example from ring theory.

Example 12.12 (Reduced commutative rings of characteristic zero). We recall that a ring
(resp. meadow) A has characteristic n € Z when n is the least m € Z* such that m1 = 0.
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If A is trivial or has not characteristic n for any n € Z*, we say that it has characteristic
zero. In other words, A has characteristic zero if and only if it validates the quasiequation
In~0— x =y for every n € Z*. Consequently, the class RCRing, of reduced commutative
rings of characteristic zero forms a quasivariety.

We will make use of the following observations established in [30]. The quasivariety
RCRing,, is relatively congruence distributive and its relatively finitely subdirectly irreducible
members are precisely the integral domains of characteristic zero, where an integral domain
is a commutative ring validating the formulas 0 % 1 and zy = 0 — (r = 0 Uy =~ 0).
Furthermore, the class Meadow, of meadows of characteristic zero is a congruence preserving
Beth companion of RCRing,,.

As the class of integral domains of characteristic zero is closed under nontrivial subalgebras,
from Theorem 12.10 it follows that Meadow, is an arithmetical variety with the congruence
extension property. None of these facts holds for RCRing,, which is a proper quasivariety
without the relative congruence extension property (congruence permutability is a property
of varieties only), as we proceed to illustrate.

First, observe that the ring of integers Z is an integral domain of characteristic zero, while
its quotient induced by the ideal pZ has characteristic p. Consequently, RCRing, is a proper
quasivariety. To show that RCRing, lacks the relative congruence extension property, consider
the polynomial ring Z[z] and observe that it is an integral domain of characteristic zero and,
therefore, belongs to RCRing,. Then let § be the congruence of Z[x| generated by the pair
(x,0). As Z[x]/0 = 7Z, we obtain that  is an RCRing,-congruence of Z[z]. On the other
hand, observe that Z[z] is a subalgebra of a field A of characteristic zero because it is an
integral domain of characteristic zero (see, e.g., [4, Thm. 11.7.2]). Since A is a field, it does
not, possess a congruence extending 6. Hence, we conclude that RCRing, lacks the relative
congruence extension property, as desired. X

Next we prove Theorems 12.4, 12.7, 12.9, and 12.10 and Corollary 12.11. The proof of
Theorem 12.4 hinges upon the next pair of observations.

Proposition 12.13. Let M be a pp expansion of a quasivariety K induced by F C ext,,(K)
and Lx. Then Cony(A) = Conk(Aly, ) for every A € K[££].

Proof. Consider A € K[£z]. As the inclusion Conm(A) C Conk(Alg, ) always holds (see
Remark 12.2), we detail only the proof of the reverse inclusion. Consider ¢ € Conk(Alg, ).
Then (Aly,)/0 € K. Since F C ext,,(K) and K is a quasivariety, by Proposition 9.6
there exists B € K[£z] such that (Aly,)/0 < Blg,. Therefore, the canonical surjection
h: Aly, — Alg, /0 can be viewed as a homomorphism h: Al,, — Bly, . As A, B € K[£7],
Proposition 9.5 guarantees that h is also a homomorphism from A to B. Together with
B € M and Ker(h) = 0, this yields that 6 is an M-congruence of A. X

Proposition 12.14. Let My and My be a pair of pp expansions of a quasivariety K. Assume
that My and My are faithfully term equivalent relative to K. Then My is congruence preserving
if and only if so is Ms.
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Proof. Let T} and T, be the sets of terms, respectively of My and My, with variables in
{z,, : n € N}. Moreover, let 7: Ly, — Ty and p: Ly, — T be the maps witnessing the fact
that M; and My are faithfully term equivalent relative to K.

By symmetry it suffices to show that if M; is congruence preserving, then so is My. Assume
that My is congruence preserving. Then for every A € My, we have

Conm, (A) = Conu, (7(A)) = Conk(7(A) [y, ) = Conk(Alg,),

where the first equality follows from Remark 11.12(iv), the second from the assumption that
M; is congruence preserving, and the last from 7(A)[y, = Aly, (which holds because 7 and
p witness a term equivalence that is faithful relative to K). X

We are now ready to prove Theorem 12.4.

Proof. (i): Since M is equational, there exists a pp expansion N of K induced by some
F C exte(K) and £ such that M is faithfully term equivalent to N relative to K. We can
apply Theorem 10.4, obtaining N = K[£z]. Therefore, Cony(A) = Conk(Aly, ) for every
A € N by Proposition 12.13. Hence, we conclude that N is congruence preserving. From
Proposition 12.14 it follows that M is congruence preserving as well.

(ii): In view of Remark 12.2, it suffices to show that Conk(A[y, ) € Conm(A) for each
A € M. To this end, consider A € M and 6 € Conk(Aly,). As M is a pp expansion of K, it
is of the form S(K[££]). Since A € M, this implies the existence of some B € K[£z] such
that A < B. Clearly, Al < Blg, € K. Therefore, from the assumption that K has the
relative congruence extension property it follows that there exists ¢ € Conk (B, ) such that
0 = ¢l 4. Since B € K[££], we can apply Proposition 12.13, obtaining ¢ € Conk(B/,) =
Conm(B). Together with A < B, this yields ¢[ 4 € Conm(A). As § = ¢[ 4, we conclude that
6 € Cony(A). X

We now prove Theorem 12.7.

Proof. Let M be a pp expansion of K of the form S(K[£#]). From the assumption that K has
the amalgamation property and Theorem 4.3(i) it follows that every f € F C ext,,(K) is
interpolated by some f, € imp,,(K).

Consider the set of implicit operations

Fo={fc:f€F}

of K. We will prove that F, C exty,(K). As F. C imp,(K) by definition, it suffices to
show that F, C ext(K). Consider an n-ary f, € F., A € K, and ay,...,a, € A. Since
[ € F C ext(K), there exists B € K with A < B such that {(ay,...,a,) € dom(fB).
Consequently, (ay,...,a,) € dom(fB) because f, interpolates f. Hence, f, is extendable.
Together with Theorem 10.4, the inclusion F, C ext.,(K) implies that M, = K[££,] is a
pp expansion of K. Therefore, to prove that M is an equational pp expansion of K, it only

remains to show that the pp expansions M, and M are faithfully term equivalent relative to
K.



THE THEORY OF IMPLICIT OPERATIONS 89

Since £ is an F-expansion of Lk and Lz, is an F,-expansion of Lk, we may assume
that

EsziﬁKU{gf:fef} and .%f*:.%KU{hf*lf*ef*}.

Let T" and T, be the sets of terms, respectively of £z and £L,, with variables in {x,, : n € N}.
We will prove that M and M, are faithfully term equivalent relative to K as witnessed by the
maps 7: Lr — T, and p: Lz, — T defined for every p € L7 and q € L£, as

p(r1, ..., xy,) if p € Lx;
7(p) = .
hy(x1,...,2,) if p= gy for some f € F;

(q) = q(z1,...,x,) if g € Ly;
P gf(x1,...,x,) if ¢ = hy, for some f, € F,.

To this end, we will use without further notice the fact that M = S(K[£%]) and M, =
S(K[Zz]) = KIZx].
The definition of 7 and p guarantees the validity of conditions (iii) and (iv) in the definition

of faithful term equivalence. Therefore, it only remains to show that for all A € S(K[Z£])
and B € S(K[Z£,]),

p(A) € S(K[£x]) and 7(B) € S(K[£LF]). (56)
We begin by showing that
p(A) € K[Zx.], for every A € K[ZL£]. (57)

Consider A € K[£#]. Then there exists B € K such that A = B[£z]. We will prove that
fB is total for every f, € F,. Consider f, € F,. Then f € F by the definition of F,. Since
B[%7#] is well defined, the function fB is total. As f. interpolates f, this implies fZ = fB,
whence fB is total as well. Consequently, the algebra B[%z,] is defined and belongs to
K[£%.]. Moreover, for every f € F we have

B[% B4Fr,
gf[ }_]:fB:ff:hf*[ f}

Together with the definition of p and the fact that B is the £Lg-reduct of both B[£ x| and
B[%%,], the above display guarantees that p(A) = p(B[%x|) = B[%z] € K[££,], thus
establishing (57).

Next we prove the left hand side of (56). Consider A € S(K[££]). Then A < A’ for
some A’ € K[£z]. By (57) we have p(A’) € K[££.]. Moreover, from A < A’ it follows
that p(A) < p(A’) (see Remark 11.12(ii)). Together with p(A’) € K[Z£x,], this yields
p(A) € S(K[££.]), as desired.

It only remains to prove the right hand side of (56). Consider B € S(K[Z£,]) = K[£%,].
Then By, € K. As F C ext(K) and K is a quasivariety by assumption, we can apply
Theorem 8.4, obtaining some C' € K with B[y, < C such that f€ is total for every
f € F. Consequently, the algebra C[£#] is defined and belongs to K[££]. Therefore,
p(C[£Lx]) € K[£%,] by (57). Moreover,

Bly, < C = C[%F]ly, = p(C[LF]) I,
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where the last equality holds because p sends each n-ary f € %k to f(zy,...,z,) by
definition. Together with B, p(C[£x]) € K[££.], the above display allows us to apply
Proposition 9.5, obtaining B < p(C[%x]) and, therefore, 7(B) < 7(p(C[£#])) (see Remark
11.12(ii)). Since the definition of 7 and p ensures that C[£zx] = 7(p(C[£L#])), we obtain
that 7(B) < C[%x| € K[Zx], whence 7(B) € S(K[££]). We conclude that M, and M are
faithfully term equivalent relative to K.

Since M, is induced by F, C ext,(K) and £x,, we obtain that M is an equational pp
expansion of K. Then Theorem 12.4 implies that M is congruence preserving.

It remains to prove that M has the amalgamation property. Consider a pair of embeddings
f:A— Band g: A - C with A,B,C € M. As B,C € M = S(K[£%]), there exist
B',C'" € K[£#] and a pair of embeddings i;: B — B" and iy: C — C". Let f': A — B’ and
g : A — C’' be the embeddings defined as f' =i 0 f and ¢’ = i3 0 g. Observe that f" and ¢’
can be viewed as embeddings f': Al — B'[,, and g': Aly, — C'[g, . Furthermore, from
A,B’,C" € M and Proposition 10.2 it follows that Ay, , B'l¢,,C'[4, € K. Therefore, the
assumption that K has the amalgamation property guarantees the existence of some D € K
and embeddings hy: B'[y, — D and hy: C'[¢, — D such that hyo f' = h,og".

Bly, —— Bly,

Cly, — = C [,

Recall that D € K and that M = S(K[Z£]) is a pp expansion of K. Therefore, by
Proposition 10.2 there exists D' € K[£] such that D < D'[, . Let by B[y, — D[4,
and hy: C'ly, — D'[¢, be the embeddings obtained by composing hy and hy, respectively,
with the inclusion map of D into D', . Since B',C’, D' € K[£¥], Proposition 9.5 implies
that h;: B' — D" and hy: C' — D’ are also embeddings. Moreover, from hyo f' = h,og" it
follows that h'; o f' = hj o g'. Together with f" =74, o f, and ¢’ = iy o g, this yields

Wyoirof=hyof =hjog =hjoiyoyg.

In view of the above display and of D' € K[£z] C M, the pair of embeddings h’;0i,: B — D’
and hj oiy: C — D’ establishes the amalgamation property for M.
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Next we prove Theorem 12.9.

Proof. We begin by proving that Myzg = {A € M : Algy, € Kirs }, namely, that for every
AeM,
A € Mppyt = Aly, € Kipsr- (58)

To this end, consider A € M and observe that Aly,, € K by Proposition 10.2. From
Proposition 2.10 it follows that

Ac MRFSI < ldA c IrrM(A);
Algy, € Kprst <= idy € lrre(Alg, ).

Observe that Conpm(A) = Conk(A[y, ) because M is a congruence preserving pp expansion of
K by assumption. Therefore, Irry(A) = Irrc(AT, ). Together with the above display, this
establishes (58), as desired. The proof that My = {A € M : Afg, € Kgy} is analogous and,
therefore, omitted.

It only remains to prove the last part of the statement. Suppose that K is a variety.
From Theorem 10.3(ii) it follows that M is a quasivariety. Therefore, it remains to show
that M is closed under homomorphic images. By Proposition 2.5 it suffices to prove that
Con(A) = Conm(A) for every A € M. To this end, observe that for every A € M,

Con(A) C Con(Alg,) = Conk(Aly,) = Conu(A),

where the first step holds by Remark 12.2, the second follows from Ay, € K (see Propo-
sition 10.2) and the assumption that K is a variety, and the third from A € M and the

assumption that M is a congruence preserving pp expansion of K. Thus, Con(A) = Conyw(A),
as desired. X

Our next goal is to prove Theorem 12.10. To this end, it is convenient to establish the
following technical observation first.

Proposition 12.15. Let K be a relatively congruence distributive quasivariety for which
Krrst 1S closed under nontrivial subalgebras. Moreover, consider A € K and B < A x A
with projection maps p1,ps: B — A such that for every {(a,b) € B we have (a,a), (b,b) € B.
Assume that K has the strong epimorphism surjectivity property. Then B = Cgg (B) N (p1[B] x

p2[B]).

Proof. As the inclusion B C Cgi¢(B) N (p1[B] x ps[B]) always holds, we detail the proof of
the reverse inclusion. Consider (a,b) € Cgit(B) N (p1[B] x p2[B]). We need to prove that
(a,b) € B. Suppose the contrary, with a view to contradiction.

From Proposition 2.8 it follows that Cgy(B) is the universe of a member Cgi¢(B)* of
K such that Cg{(B)* < A x A is a subdirect product. Together with B C Cgi¢(B) and
the assumption that B < A x A, this yields B < Cgit(B)*. As B < Cgit(B)* € K and
(a,b) € Cg@(B) — B, we can apply the assumption that K has the strong epimorphism
surjectivity property, obtaining a pair of homomorphisms g, h: Cgig(B)* — C with C € K
such that

glp =hlp and g({(a,b)) # h((a,b)). (59)
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In view of Remark 6.2, we may further assume that C € K.

Since (a, b) € p1[B] x pz[B] by assumption, there exist ¢,d € A such that (a,c), (d,b) € B.
By the assumptions this yields (a,a), (b,b) € B. Consequently, the left hand side of (59)
guarantees that g({a,a)) = h({(a,a)) and g({b,b)) = h((b,b)). By the right hand side of (59)
this implies that

either g({a, b)) # g((a, a)) or h((a,b)) # h({a,a)) (60)
and

either g({a, b)) # g((b,0)) or h({a,b)) # h((b,0)). (61)

We rely on the next observation.

Claim 12.16. For every ¢ € {Ker(g),Ker(h)} there ezists n € Conk(A) such that

¢ € {(nx A% fch(By (A% x ) fcg;?(B)}

Proof of the Claim. By symmetry it suffices to show that the statement holds for the case
where ¢ = Ker(g). Since g: Cgig(B)* — C is a homomorphism with C € K, we have
Ker(g) € ConK(Cg?(B)*). Moreover, recall that C € Kgpg; and that Kgpg is closed under
nontrivial subalgebras by assumption. Therefore, from Cgig(B)*/Ker(g) € IS(C) it follows
that Cgi¢ (B)*/Ker(g) is either trivial or belongs to Kyps. Lastly, recall that Cgi¢ (B)* < Ax A
is a subdirect product with A € K. As K is a relatively congruence distributive quasivariety
by assumption, we can apply Corollary 2.18, obtaining the desired conclusion. X

By symmetry and Claim 12.16 we may assume that there exist n;, 72 € Conk(A) such that
Ker(g) = (m x A%)[cga(p) and Ker(h) € {(n2 X A%)Icga(n), (A X 1) [cgp(m)}- We have two
cases depending on whether Ker(h) is (12 x A%)[cga () OF (A X 1) [cga (-

First, suppose that Ker(h) = (2 x A?)]¢ CeA(B)- Then

Ker(g) = (m x A?) [cga(s) and Ker(h) = (1o x A?) [cea(B)- (62)

Recall that (a,b) € Cgg(B) and, therefore, a,b € A. Together with 7,7, € Con(A), this
implies (a,a) € n; N1y and (a,b) € A% Thus, ((a,a), {a,b)) € (n x A%) N (ny x A?). Since
(a,a), (a,b) € Cgi(B), we obtain

({a,a), (a,b)) € ((m x A*) N (92 x A2))fch(B) (m x A? Jegas) N (112 X Az)cg@(s)'
In view of (62), this amounts to ((a,a), (a,b)) € Ker(g) N Ker(h), that is,
9({a,a)) = g({a,b)) and h((a,a)) = h({a,b)),

a contradiction with (60).
It only remains to consider the case where Ker(h) = (A2 x 1) [cga(p)- In this case, we have

Ker(g) = (m x A%) fcg;;‘(B) and Ker(h) = (A% x 1) fcg;;‘(B)- (63)
We rely on the following observation.

Claim 12.17. We have Cgit(B) C ny.
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Proof of the Claim. As n; € Conk(A), it will be enough to show that B C n;. To this
end, consider (p,q) € B. By assumption we also have (q,q) € B. Since B < A x A by
assumption, we have p,q € A. Together with 7, € Con(A), this yields (g,q) € 72 and,
therefore, ((p, q), (¢,q)) € (A% xna). As (p,q) € B C Cgit(B) and (g, q) € Cgi(B) (the latter
because Cgi¢(B) is a congruence of A), we obtain

(P, ), (¢, 9)) € (A* X 1) [cgp () = Ker(h),

where the last equality holds by the right hand side of (63). The left hand side of (59) implies
Ker(g)[ 5 = Ker(h)[5. Together with the above display and (p,q), (¢,q) € B, this implies
((p.9): (2, 9)) € Ker(g). Since Ker(g) = (m x A*)[cga(p by the left hand side of (63), we
conclude that (p,q) € ;. X

Now, recall that (a,b) € Cgit(B). By Claim 12.17 we obtain (a,b) € 1. Since b € A, this
implies ({a,b), (b,b)) € (n x A%). On the other hand, from a,b € A and 7, € Con(A) it
follows that ((a,b), (b,b)) € (A2 x n,). As (a,b), (b,b) € Cgic(B), we obtain

<<Cl, b>7 <b7 b>> < (771 X A2) ng;?(B) and <<a7 b>7 <b7 b>> < (A2 X 7]2) ngf(B)'
By (63) this amounts to ({(a,b), (b,b)) € Ker(g) N Ker(h), that is,

9({a,0)) = g((b,0)) and h((a,b)) = h((b,1)),
a contradiction with (61). X

We will also make use of the next observation from [29, Thm. 6.1].

Theorem 12.18. Let K be a relatively congruence distributive quasivariety for which Kgpg 15
closed under nontrivial subalgebras. If K has the weak epimorphism surjectivity property, then
the variety V(K) is arithmetical.

As a last step before proving Theorem 12.10, we establish the following result on the strong
epimorphism surjectivity property.

Theorem 12.19. Let K be a relatively congruence distributive quasivariety for which Kypg s
closed under nontrivial subalgebras. If K has the strong epimorphism surjectivity property,
then K is an arithmetical variety with the congruence extension property.

Proof. Suppose that K has the strong epimorphism surjectivity property.

We begin by showing that K is a variety. As K is a quasivariety, by Proposition 2.5 it
suffices to show that Con(A) = Conk(A) for every A € K. To this end, consider A € K and
6 € Con(A). We will show that # = Cgg (A) which, in turns, implies # € Conk(A), as desired.
In view of Proposition 2.8, the congruence 6 is the universe of a subalgebra B < A x A.
Furthermore, for every (a,b) € B = 6 we have (a, a), (b,b) € § = B because 0 is a congruence
of A. Therefore, we can apply Proposition 12.15, obtaining

0 = B = Cgg (B) N (p1[B] x pa[B]) = Ceic (0) N (p1[0] x pa[6]).
Since 0 is a reflexive relation on A, we have p;[0] x p3[0] = A x A. Therefore, the above

display yields § = Cgi () N (A x A) = Cgi(A). It follows that # € Conk(A). Hence, we
conclude that K is a variety.
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Next we prove that the variety K has the congruence extension property. It will be enough
to show that § = Cg*(0)[, for all C < A € K and 6 € Con(C). Accordingly, consider
C < A cKand# € Con(C). In view of Proposition 2.8, the congruence 6 is the universe of a
subalgebra B < C x C'. Furthermore, for every (a,b) € B = 6 we have (a,a), (b,b) € 0 = B
because 6 is a congruence of C. As C' < A, we have C x C < A x A, whence B < A x A.
Therefore, we can apply Proposition 12.15, obtaining

0= B = Cg(B) N (m[B] x pa[B]) = Cg(0) N (1 [0] x paff).

Since 0 is a reflexive relation on C, we have p[0] X po[0] = C' x C. Therefore, the above display
yields # = Cgt(6) N (C x C) = Cg*(#)],. Thus, we conclude that K has the congruence
extension property.

It only remains to prove that the variety K is arithmetical. As K has the strong epimorphism
surjectivity property by assumption, it has the weak epimorphism surjectivity property as
well. Moreover, K = V(K) because K is a variety. Therefore, from Theorem 12.18 it follows
that K is arithmetical. X

We are now ready to prove Theorem 12.10.

Proof. Let M be a congruence preserving Beth companion of K. Since M is a pp expansion
of K and K is a quasivariety by assumption, we obtain that M is also a quasivariety (see
Theorem 10.3(ii)). In addition, as M is a Beth companion of K and K is a quasivariety, M has
the strong epimorphism surjectivity property by Theorem 11.6. From the assumption that K is
relatively congruence distributive and Theorem 12.8 it follows that M is relatively congruence
distributive as well. Lastly, we will prove that My is closed under nontrivial subalgebras.
Consider A < B € Mgy with A nontrivial. By Theorem 12.9 we have Bly, € Ky
Furthermore, A < B implies Aly, < Bly,. As A is nontrivial, so is Aly, . Therefore,
Aly, < Blgy, € Kips and the assumption that Kgpg is closed under nontrivial subalgebras
guarantee that Aly, € Kgps. Together with A € M, this allows us to apply Theorem 12.9,
obtaining A € Mgyy. Hence, we conclude that Mggg is closed under nontrivial subalgebras.
Therefore, M is a quasivariety with the strong epimorphism surjectivity property that,
moreover, is relatively congruence distributive and such that Mgy is closed under nontrivial
subalgebras. Thus, from Theorem 12.19 it follows that M is an arithmetical variety with
the congruence extension property. Since M is a variety, we obtain Myg = Mgpg. AS My 18
closed under nontrivial subalgebras, we conclude that so is Myg;. X

Our last goal is to prove Corollary 12.11. To this end, we rely on the following consequence
of Theorem 12.19 which, in the context of varieties, originates in [10, Cor. 3(i)] (see also [29,
Example 6.5]).

Corollary 12.20. Every relatively filtral quasivariety with the strong epimorphism surjectivity
property is a discriminator variety.

Proof. Let K be a relatively filtral quasivariety with the strong epimorphism surjectivity
property. As K is relatively filtral, it is relatively congruence distributive and Kgpg is closed
under nontrivial subalgebras (see, e.g., [24, Cor. 6.5(i, iv)]). Therefore, from Theorem 12.19
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it follows that K is an arithmetical variety. Since K is a relatively filtral quasivariety, this
yields that K is a congruence permutable filtral variety. As congruence permutable filtral
varieties coincide with discriminator varieties (see, e.g., [18, 52]), we conclude that K is a
discriminator variety. X

Furthermore, we recall that a join semilattice (A; V) is said to be dually Brouwerian when
for all a,b € A there exists the smallest ¢ € A such that a < bV ¢. Moreover, an element a
of a complete lattice A is compact when for every X C A such that a < \/ X there exists a
finite Y C X such that a < \/Y. With every quasivariety K and algebra A we associate a
join semilattice Compy(A) whose universe is the set of compact elements of Conk(A) and
whose join operation + is defined by the rule 0 4+ ¢ = Cg?(Q U ¢). Lastly, a member A of
a quasivariety K is said to be simple relative to K when Conk(A) has exactly two elements,
and we say that K is relatively semisimple when every member of Ky, is simple relative to
K. When K is a variety, we simply say that A is simple and K semisimple. We will rely on
the fact that a quasivariety K is relatively filtral if and only if it is relatively semisimple and
Compg(A) is dually Brouwerian for every A € K (see [24, Thm. 6.3] and [78, Thms. 5 &
8]).” Bearing this in mind, we will now prove Corollary 12.11.

Proof. Let M be a Beth companion of a relatively filtral quasivariety K. Since every relatively
filtral quasivariety has the relative congruence extension property (see, e.g., [24, Cor. 6.5(i)]),
so does K. As M is a pp expansion of K, we conclude that M is congruence preserving by
Theorem 12.4(ii).

We will show that M is also a relatively filtral quasivariety. The fact that M is a quasivariety
is a consequence of Theorem 10.3(ii) and the assumption that M is a pp expansion of the
quasivariety K. Therefore, it only remains to prove that M is relatively filtral, i.e., that it is
relatively semisimple and Compy,(A) is dually Brouwerian for every A € M. To show that M
is relatively semisimple, consider A € Mgg. Since M is a congruence preserving pp expansion
of K, we can apply Theorem 12.9, obtaining Al € Kgpg. As the quasivariety K is relatively
semisimple (because it is relatively filtral by assumption), we obtain that Conk(Alg, ) has
exactly two elements. Moreover, Cony(A) = Conk(Aly,) because A € M and M is a
congruence preserving pp expansion of K. Therefore, Cony(A) has exactly two elements,
whence A is simple relative to M. Hence, we conclude that M is relatively semisimple, as
desired. Next we prove that Compy,(A) is dually Brouwerian for every A € M. Consider
A € M and observe that Al € K by Proposition 10.2. Since M is congruence preserving,
we have Cony(A) = Conk(Alg, ), whence Compy(A) = Compy(Aly, ). As Compy(Aly,)
is dually Brouwerian (because K is relatively filtral and A[g, € K), we conclude that so is
Compp(A). Thus, we conclude that M is a relatively filtral quasivariety.

Lastly, observe that M has the strong epimorphism surjectivity property because it is a
Beth companion of the quasivariety K (see Theorem 11.6). Thus, M is a relatively filtral
quasivariety with the strong epimorphism surjectivity property. By Corollary 12.20 we
conclude that M is a discriminator variety. X

9This description of filtrality originated in the context of varieties (see [51, 52]) and was later extended to
quasivarieties in [24].
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13. ABSOLUTELY CLOSED AND PRIMAL ALGEBRAS

The aim of this section is to provide additional criteria to establish whether a pp expansion
of a quasivariety is a Beth companion. The two main results are Theorems 13.3 and 13.25
involving absolutely closed algebras and primal algebras, respectively. We will employ these
results to determine the Beth companions of torsion-free Abelian groups (Example 13.6),
Abelian ¢-groups (Example 13.13), MV-algebras (Example 13.17), and varieties of MV-algebras
generated by a finite chain (Example 13.26).

We begin by recalling the definition of an absolutely closed algebra (see [71, p. 236]).

Definition 13.1. Let K be a class of algebras. A member A of K is called absolutely closed
in K when dg(A, B) = A for every B € K such that A < B. The class of absolutely closed
members of K will be denoted by K,¢.

On the one hand, absolutely closed algebras are related to the reducts of the members of
Beth companions, as the following result states.

Theorem 13.2. Let K be a quasivariety with a Beth companion M = S(K[£#]). Then
K[z}'] L%K - KAC - Mr,afK-
Moreover, if M is an equational Beth companion of K, then M[q, = Kic.

On the other hand, the next result shows that absolutely closed algebras provide a sufficient
condition for a pp expansion of a quasivariety to be a Beth companion.

Theorem 13.3. Let M be a pp expansion of a quasivariety K such that Mly, C Kye. Then
M is a Beth companion of K.

We postpone the proofs of Theorems 13.2 and 13.3 and proceed to describe some of their
applications. To this end, it is convenient to introduce injective algebras and absolute retracts
(see, e.g., [76, pp. 80-81]) and relate them to absolutely closed algebras.

Definition 13.4. A member A of a quasivariety K is said to be:

(i) injective in K when for all B, C' € K such that B < C and homomorphism f: B — A
there exists a homomorphism g: C' — A such that g5 = f;

B——C
fl

L{/ g
A

(ii) an absolute retract in K when for every B € K such that A < B there exists a
homomorphism ¢g: B — A such that g[, is the identity map on A.

A——+ B

7

7
id -
9

A
Proposition 13.5. The following conditions hold for a class of algebras K and A € K:



THE THEORY OF IMPLICIT OPERATIONS 97

(i) if A is injective in K, then it is an absolute retract in K;
(i) if A is an absolute retract in K, then it is absolutely closed in K.

Proof. (i): See, e.g., [76, Prop. 1.1].

(ii): Suppose that A is an absolute retract in K and consider B € K such that A < B.
Since A is an absolute retract in K, there exists a homomorphism g: B — A such that
gl 4 is the identity on A. Let h = 7 o g, where ¢ is the inclusion map of A into B. Then
h: B — B is a homomorphism such that h(a) = g(a) = a for every a € A. Consider the
identity map id: B — B. As h(a) = a = id(a) for every a € A, we have h[, = id],.
Then h(b) = id(b) = b for every b € dx(A, B). Since the image of h is A, it follows that
dk(A, B) = A. Therefore, A is absolutely closed in K. X

We are now ready to illustrate how Theorem 13.3 can be applied to describe the Beth
companions of concrete classes of algebras.

Example 13.6 (Torsion-free Abelian groups). An Abelian group™ A = (A;+, —,0) is said
to be torsion-free when 0 is its only element of finite order. Torsion-free Abelian groups
form a quasivariety TFAG axiomatized relative to Abelian groups by the quasiequations
nr~0— x =0 for every n € Z*. Our aim is to describe the Beth companion of TFAG.

To this end, let A € TFAG, a € A, and n € Z". We say that an element b € A is the result
of dividing a by n if nb = a. An Abelian group A is called divisible when for all a € A and
n € Z7 there exists some b € A such that nb = a. In view of the next result, “dividing by n’
is an extendable implicit operation of TFAG.

9

Proposition 13.7. For each n € Z* there exists a unary f, € exte,(TFAG) such that for all
A € TFAG and a € dom(fA),

dom(fA) ={c€ A:nb=c for somebe A};
f2(a) = the result of dividing a by n.

n

Proof. Let ¢, (z,y) = x = ny. Moreover, let Z and Q be the additive groups of the integers
and the rationals, respectively. The fundamental theorem of finitely generated Abelian groups
(see, e.g., [45, Thm. 5.2.3]) implies that every finitely generated torsion-free Abelian group
is isomorphic to Z™ for some m € N. Proposition 2.16 implies that TFAG is generated
as a quasivariety by its finitely generated members. Since Z < Q, we obtain that TFAG
is also generated as a quasivariety by Q. Observe that for all §,5 € Q and n € Z* we
have that Q F ¢, (%, 5) implies £ = %. Therefore, each ¢, is functional in Q. As TFAG
is the quasivariety generated by Q, Corollary 3.11 yields that ¢, defines a member f,, of
imp,.,(TFAG). From the definition of ¢,, it follows that the two displays in the statement hold.
Moreover, fQ is total because every rational can be divided by n in Q. As TFAG is generated

as a quasivariety by Q, Proposition 8.11(ii) guarantees that f,, is extendable. X
Corollary 13.8. TFAG lacks the strong epimorphism surjectivity property.

101 this and the next example, we temporarily switch to the additive notation for Abelian groups, as it
will be more convenient.
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Proof. Let fy be the member of ext.,(TFAG) given by Proposition 13.7. Since Z < Q € TFAG
and f(1) = 1 & Z, from Theorem 4.10 it follows that 1 € drrag(Z, Q) — Z. Therefore, TFAG
lacks the strong epimorphism surjectivity property by Proposition 6.6. X
Let F = {f, :n € Z"} be the set of implicit operations given by Proposition 13.7. By the
same proposition we have F C ext.,(TFAG). Denote by £ the language of groups and let
Lr=%LU{d,:n €Z"} be an F-expansion of £ in which the role of gy, is played by d,.
Then DAG = S(TFAG|£]) is an equational pp expansion of TFAG. We will prove that it is
an equational Beth companion of TFAG. To this end, we rely on the following observation.

Proposition 13.9. DAGJ is the class of divisible torsion-free Abelian groups. Moreover,
every member of DAGJ is injective in TFAG.

Proof. Let A € TFAG. As F C ext.,(TFAG), from Theorem 10.4 it follows that DAG =
TFAG[%#]. Then A € DAG|, if and only if fA is total for every n € ZT. Therefore,
A € DAGJy if and only if A is divisible. Since DAG[, C TFAG, we conclude that the
members of DAGJ, are exactly the divisible torsion-free Abelian groups. It only remains to
prove that every member of DAGJ, is injective in TFAG. It is well known that the injective
members of the variety AG of Abelian groups are exactly the divisible Abelian groups (see,
e.g., [106, Cor. 2.3.2]). Since TFAG C AG, from the definition of an injective algebra it follows
that every divisible member of AG that is torsion-free is also injective in TFAG. As all the
members of DAG[ are divisible, we conclude they are injective in TFAG. X

We are now ready to establish the desired description of the Beth companion of TFAG.
Theorem 13.10. DAG is a variety and an equational Beth companion of TFAG.

Proof. Let 3 be a set of equations axiomatizing the variety of Abelian groups. Since ¢,, =
x = ny is the equation defining f,, (see the proof of Proposition 13.7), from Theorem 10.4 it
follows that DAG is axiomatized by the set of quasiequations

Fr=YU{nzr~0—x~0:neZ}u{r~nd,(x) :neZt}
We will show that DAG is also axiomatized by the set of equations
I'=YU{z=d,(nz):neZ'U{r=nd,(z) :ne€Z"}.

It will be enough to prove that I' and I have the same models. First, let A be a model
of T'. Then Al is a torsion-free Abelian group. Consider a € A and n € Z*. Since
A F x = nd,(z), we have na = nd?(na). Then 0 = n(d4(na) — a), which implies a = d4(na)
because Al is torsion-free. So, A F 1. Conversely, suppose that A is a model of I, Let
a€ Aandn e Z". If na =0, then

a = d(na) = dA(0) = d(n0) =0,

where the first and last equalities hold because A F = = d,,(nx), the second because na = 0
by assumption, and the third because 0 = n0. Therefore, A F nx =~ 0 — x = 0. Hence, A is
a model of I'. We conclude that the set of equations IV axiomatizes DAG, which is then a
variety.
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Lastly, by Proposition 13.9 every member of DAGJ, is injective in TFAG. Then Proposi-
tion 13.5 implies DAG[, C TFAG,. Since DAG is a pp expansion of TFAG, from Theorem 13.3
it follows that DAG is a Beth companion of TFAG which, moreover, is equational because
DAG is an equational pp expansion of TFAG. X

For the next pair of examples, it is convenient to introduce the following class of algebras
(see [71, p. 236]).

Definition 13.11. A member A of a class of algebras K is called saturated in K when there
exists no B € K such that A is a proper K-epic subalgebra of B.

In quasivarieties, saturated algebras are also called epicomplete (see, e.g., [8, p. 176]).
Saturated and absolutely closed algebras are related as follows.

Proposition 13.12. The following conditions hold for a class of algebras K:

(i) every algebra that is absolutely closed in K is saturated in K;
(i) if K is a quasivariety with the amalgamation property, then every algebra that is saturated
in K is absolutely closed in K.

Proof. (i): Suppose that A is absolutely closed in K. Consider B € K such that A is a proper
subalgebra of B. Assume, with a view to contradiction, that A is a K-epic subalgebra of B.
Then f = g for every C € K and pair of homomorphisms f,g: B — C such that f[, = g[4.
Therefore, dx(A, B) = B. Since A is absolutely closed in K, we have that dx(A, B) = A.
We conclude that A = B, which contradicts the assumption that A is a proper subalgebra
of B.

(ii): Assume that K has the amalgamation property and that A is saturated in K. Let
B € K be such that A < B. To prove that A is absolutely closed in K, we need to show that
dk(A, B) = A. Consider the subalgebra D of B with universe dx(A, B). Then A < D < B.
Since K has the amalgamation property and is a quasivariety by assumption, Proposition 4.11
implies dx (A, D) = dx(A, B)ND. Asdk(A, B) = D, we obtain dg(A, D) = D. Furthermore,
D € K because D < B € K and K is a quasivariety. It follows that A is a K-epic subalgebra
of D. Then the assumption that A is saturated in K and D € K let us conclude that A = D.
Therefore, dx(A, B) = A, as desired. X

Example 13.13 ({-groups). An Abelian (-group is an algebra (A;+, — A, V,0) such that
(A; 4+, —,0) is an Abelian group, (A4; A, V) is a lattice, and

a<bimpliesa+c<b+c

for all a,b,c € A, where < denotes the partial order on A induced by its lattice structure
(see, e.g., [80]). The class /AG of Abelian ¢-groups forms a variety (see, e.g., [16, Cor. 1 of
Thm. XIII.2]). Our aim is to describe the Beth companion of /AG.

To this end, given A € (AG, a,b € A, and n € Z™', we say that b is the result of dividing a
by n if nb = a. We say that an Abelian ¢-group is divisible when so is its group reduct.
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Proposition 13.14. For each n € Z* there exists a unary f, € exte,((AG) such that for all
A € (AG and a € dom(fA),

dom(fA) = {c€ A:nb=c for somebe A};
f2(a) = the result of dividing a by n.

n

Proof. Let ¢,(x,y) = x = ny. The proof of Proposition 13.7 shows that ¢,, defines a unary
implicit operation of TFAG. As the class of group reducts of /AG is TFAG (see [16, Cor. of
Thm. XIII.11]), the equation ¢, defines also a unary f, € imp,(¢AG). Clearly, the two
displays in the statement hold for f,,. Therefore, it only remains to show that f,, is extendable.
Recall from [15, Lem. 1, p. 317] that the members of (AGypg are nontrivial and linearly
ordered. Moreover, the class of nontrivial linearly ordered members of (AGgyg is U(Q), where
Q denotes the additive group of the rationals equipped with the lattice structure induced by
the standard order of @ by [60]. Therefore, the Subdirect Decomposition Theorem 2.9 yields
that /AG is generated as a quasivariety by Q. Arguing as in the proof of Proposition 13.7,
we conclude that each f,, is extendable. X

The next observation can be traced back at least to [97].
Corollary 13.15. (AG lacks the strong epimorphism surjectivity property.

Proof. Analogous to the proof of Corollary 13.8 with the sole difference that Q is the algebra
employed in the proof of Proposition 13.14 and Z the subalgebra of Q whose universe is the
set of integers. X

Set F ={f,:n € Z'} be the set of implicit operations given by Proposition 13.14. By
the same proposition we have F C ext,,(TFAG). Let £ be an F-expansion of Lyac. Then
(DAG = S(!AG[££]) is an equational pp expansion of (AG.

Theorem 13.16. /DAG is a variety and an equational Beth companion of (AG.

Proof. Since F C ext.,(¢(AG) and (AG is a variety, Theorem 10.3(iii) implies that /DAG is also a
variety. Moreover, from Theorem 10.4 it follows that (DAG = (AG[<£z|. Therefore, {DAG|,,
is the class of divisible Abelian ¢-groups. Then [2, Thm. 2.1} yields that /DAGJ,,,  is the
class of members of /AG that are saturated in /AG. Since /Ab has the amalgamation property
(see [98, Thm. 2.3]), we can apply Proposition 13.12(ii), obtaining (DAG[,, C ¢AG,c. Thus,
Theorem 13.3 implies that /DAG is a Beth companion of /AG which, moreover, is equational
because /DAG is an equational pp expansion of /AG. X

Example 13.17 (MV-algebras). An MV-algebra is an algebra A = (A; @, —,0) comprising a
commutative monoid (A; @, 0) and satisfying the equations

From a logical standpoint, the interest of MV-algebras derives from the fact that they
algebraize the infinite-valued Lukasiewicz logic (see, e.g., [36]).

The variety MV of MV-algebras is generated by the algebra [0, 1] = ([0, 1], &, =, 0) with
universe the real unit interval [0,1] = {a € R: 0 < a < 1} and equipped with the operations

a®b=min{a+0b,1} and -a=1-a
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for all a,b € [0, 1], where + and — denote the standard addition and subtraction in R (see,
e.g., [36, Prop. 8.1.1]). Our aim is to describe the Beth companion of MV.
To this end, we will employ the following abbreviations

1=-0 and Oy =-("zdy),
and for every n € N we recursively define n.z by setting
0.x=0 and (n+1).x = (nz) ® .

Let A€ MV and a € A. For every n € Z" we say that b € A is the result of dividing a by
n when n.b = a and b ® ((n — 1).b) = 0. An MV-algebra A is called divisible when for all
a € A and n € Z* there exists b € A obtained as the result of dividing a by n.

Proposition 13.18. For each n € Z* there exists a unary f, € exte,(MV) such that for all
A € MV and a € dom(fA),

dom(f?) = {c € A: b is the result of diving c by n for some b € A};
fA(a) = the result of dividing a by n.

Proof. Consider the conjunction of equations

on(z,y) = (ny=2)N(y© ((n—1).y) =0).

We will rely on the following observation.

Claim 13.19. For all a,b € [0, 1] the following conditions hold in [0, 1]:
(i) n.b = a if and only if either (a <landb= %) or (a =1andb> %),

(i) b ® ((n —1).b) = 0 if and only if b < +;
(iii) [0,1] F @n(a,b) if and only if b = &.

Proof of the Claim. The definitions of & and — on [0, 1] yield n.c = min{nc,1} and c© d =
max{c+d — 1,0} for all ¢,d € [ and n € N.

(i): Suppose that n.b = a. Then min{nb, 1} = a. If a < 1, then nb = a. If a = 1, then
min{nb, 1} = 1. So, nb > 1, which yields b > % To prove the reverse implication, we
have to consider two cases. First, assume that a < 1 and b = 2. Then n.b = min{nb,1} =
min{a, 1} = a. Next we consider the case where a = 1 and b > % We have nb > 1, and
hence n.b = min{nb,1} =1 = a.

(ii): We have that b® ((n — 1).b) = 0 if and only if max{b+ ((n — 1).b) — 1,0} = 0, which
is equivalent to b+ ((n — 1).b — 1) < 0. Moreover,

b+ ((n—1).b) =1 =b+min{(n — 1)b,1} — 1 = min{nb — 1,b}.

Therefore, b ® ((n —1).b) = 0 if and only if min{nb—1,b} < 0. As b > 0, the latter condition
is equivalent to nb — 1 < 0, and hence to b < %

(iii): Together with (i) and (ii), the definition of ¢, yields that [0, 1] E ¢, (a,b) if and only
if either (a <landb=%and b< i) or (a=1and b=1). Since a € [0,1], we have & < L.

Therefore, if b = £, we have b < 1. We conclude that [0, 1] F ¢, (a,b) if and only if b= 2. K
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From Claim 13.19(iii) it follows that ¢,, is functional and total in [0, 1]. Since MV = Q([0, 1])
(see, e.g., [56, p. 84]), Corollary 3.11 and Proposition 8.11(ii) imply that ¢, defines a unary
fn € exte,(MV). Lastly, as ¢,, defines f,, the two displays in the statement hold. X

As a consequence, we obtain the following observation from [17, 103].
Corollary 13.20. MV lacks the strong epimorphism surjectivity property.

Proof. Let fy be the member of ext.,(MV) given by Proposition 13.18. Moreover, let A be
the subalgebra of [0, 1] with universe {0,1}. Since A < [0,1] € MV and fz[o’l](l) =3¢ A,
from Theorem 4.10 it follows that 3 € duv(A, [0, 1]) — A. Therefore, MV lacks the strong
epimorphism surjectivity property by Proposition 6.6. X

A DMV-algebra (see [54] and [53, Def. 5.1.1]) is an algebra A = (A;®, 7, {d, }nez+,0)
comprising an MV-algebra (A; &, -, 0) and a sequence of unary operations {d, },cz+ satisfying
the equations

n.d,(x) =z and d,(r)® ((n—1).d,(x)) = 0.
Let DMV be the variety of DMV-algebras.

Theorem 13.21. DMV is an equational Beth companion of MV.

Proof. Let F = {f, : n € Z*} C ext,,(MV) be the family of operations given by Propo-
sition 13.18. Moreover, let d, be a unary function symbol for each n € Z*. Then the
language Lr = Lmy U {d, : n € Z"} is an F-expansion of Lyy in which the role of gy, is
played by d,,. From Theorem 10.4 and the fact that each f, is defined by the conjunction of
equations ¢, in the proof of Proposition 13.18 it follows that S(MV[£x]) = MV[££] is an
equational pp expansion of MV axiomatized by the axioms of MV-algebras plus the equations
n.d,(z) =z and d,(z) ® ((n — 1).d,(z)) = 0 for n € Z*. Clearly, every member of MV[£#]
is a DMV-algebra. On the other hand, every DMV-algebra can be obtained by adding the
implicit operations f, to its MV-algebra reduct, which belongs to MV[££][,, . Therefore,
MV[£#] coincides with the variety DMV of DMV-algebras.

In view of Theorem 13.3, to show that DMV is a Beth companion of MV, it suffices to
prove that DMV [y € MV,¢. The definition of DMV yields that the members of DMV [y, are
divisible MV-algebras. Every divisible MV-algebra is saturated in MV (see [47, Thm. 3.18(ii)])
and MV has the amalgamation property (see [95, p. 91]). Therefore, from Proposition 13.12(ii)
it follows that DMV [y € MV,.. Then Theorem 13.3 yields that DMV is a Beth companion
of MV which, moreover, is equational because DMV is an equational pp expansion of MV. X

The next concept originates in [49, 50].

Definition 13.22. A finite algebra A is said to be primal when for every function f: A" — A
of positive arity there exists a term t(zy,...,z,) of £4 such that for all ay,...,a, € A,

flai,... a,) =t*aq,. .., an).

Examples of primal algebras include the two-element Boolean algebra and the rings of the
form Z, with p prime (see, e.g., [49]). Primal algebras admit the following elegant characteri-
zation (see, e.g., [21, Cor. IV.10.8]), where rigid means “lacking nonidentity automorphisms”.
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Theorem 13.23. A finite algebra A is primal if and only if V(A) is arithmetical and A is
simple, rigid, and lacks proper subalgebras.

The structure theory of varieties generated by a primal algebra is very rich, as a consequence
of the fact that these are precisely the varieties categorically equivalent to the variety of
Boolean algebras [70] (see also [41]). In particular, since the variety of Boolean algebras has
the surjective epimorphism property (see Theorem 7.5) and this property is preserved by
categorical equivalences between varieties by Remark 6.4, we deduce the following.

Proposition 13.24. Varieties generated by a primal algebra have the strong epimorphism
surjectivity property.

In the next example, we will employ the following observation.

Theorem 13.25. Let A be an £-algebra, F C imp,,(A), and L5 an F-expansion of £ such
that A[Z x| is defined. If A[£Lx] is primal, then V(A[£L#]) is a Beth companion of Q(A). If,
moreover, F C imp,,(A), then the Beth companion V(A[ZLF]) is equational.

Proof. Suppose that A[Zx] is primal. Then V(A[Z£]) has the strong epimorphism sur-
jectivity property by Proposition 13.24. Furthermore, recall from [21, Thm. IV.9.4] that
Q(A[ZLF]) = V(A[ZL£]) because A[£LF] is primal. Together with Theorem 11.6, this yields
that, to conclude that V(A[££]) is a Beth companion of Q(A), it only remains to show that
Q(A[£L#]) is a pp expansion of Q(A).

Since F C imp,,(A), for every f € F there exists a pp formula ¢; functional in A that
defines f. By Corollary 3.11 each ¢y defines some f* € imp,,(Q(A)). Let F* = {f*: f € F}.
As A[Z 7] is defined, f4 is total for every f € F. Consequently, f4 = (f*)? because f and f*
are both defined by ¢;. Therefore, (f*)4 is total for every f* € F*. Then Proposition 8.11(ii)
yields F* C ext,,(Q(A)). We can regard £ as an F*-expansion of £ by setting g = gy
for each f € F. Since f4 = (f*)A for every f € F, the definition of A[%#] is independent
on whether £ 7 is thought of as an F-expansion or as an F*-expansion. Thus, Theorem 10.5
implies that Q(A[Z#]) is a pp expansion of Q(A) induced by F* and £Lx.

The last part of the statement follows immediately from the construction described
above. X

Example 13.26 (Varieties of MV-algebras generated by a finite chain). For n € Z*, we
denote by L, the subalgebra of the real unit interval [0, 1] (cf. Example 13.17) with universe
{%:m e N, m <n}. Notice that L, is a finite MV-algebra of n + 1 elements. We consider
the variety

MV, = V(Ln) = Q(Ln)a

where the second equality in the above display holds by [57, Lem. 1.6]. One of the reasons
the varieties MV,, are of interest is that they are precisely the proper nontrivial subvarieties
of MV with the amalgamation property (see [43, Thm. 13]) or, equivalently, the subvarieties
of MV generated by a finite subdirectly irreducible algebra (see, e.g., [34, Lem. 3] and [36,
Prop. 3.6.5)).
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For each n € Z* consider the conjunction of equations

Un(@,y) = (ny = 1) N (Yo ((n—1).y) =0).
As L, <[0,1], Claim 13.19(i, ii) implies that for all a,b € L,

1
L, E¢n(a,b) < b=—.

n

Therefore, 1, defines a total unary ¢, € imp,,(Ly) such that chn is the constant map with
value . Let £, be a c,-expansion of £uy, . Since ckn is total, the algebra L,[%,] is defined

and can thought of as the result of adding a constant for the element % to L,,. Then let
DMV,, = V(L,[£.]).

Theorem 13.27. DMV,, is a an equational Beth companion of MV,,.

Proof. Recall that MV,, = Q(L,). Furthermore, ¢, € imp,(L,) and L,[£,] is defined.
Therefore, in view of Theorem 13.25, it suffices to show that L,[%£,] is a primal algebra. To
this end, we will employ Theorem 13.23.

First, observe that L,[%,] is finite because so is L,,. Moreover, recall from [36, Cor. 3.5.4]
that L, is simple. As L, [£,] is obtained by adding a constant operation to L,, we have
Con(L,) = Con(L,[£,]). Hence, L,[£,] is simple too. Similarly, since L,[%,] is obtained
by adding to L, a constant operation with value % and in L, we have I = m% for every
0 < m < n, the algebra L,[%,] is rigid and lacks proper subalgebras. Lastly, recall that
MV,, = V(L,) is arithmetical (see, e.g., [55, Prop. 7.6]). Therefore, V(A) is arithmetical for
every expansion A of L,, by [21, Thm. I1.12.5]. In particular, V(L,[%£,]) is arithmetical, as
desired. X

We now turn our attention to proving Theorems 13.2 and 13.3. We begin by establishing
the following pair of results.

Proposition 13.28. Let M = S(K[£%]) be a pp expansion of a universal class K. Then the
following conditions hold:

(i) dx(Alg,, Blgy,) = du(A, B) for all A < B € K[£LF];

(ii) M is a Beth companion of K if and only if dk(Alg,, Blg,) = A for all A< B € M.

Proof. (i): Let A < B € K[Z£]. To establish the inclusion from left to right, consider
b€ B—du(A, B). Then there exists C € M and a pair of homomorphisms g, h: B — C
such that g[, = h[, and g(b) # h(b). From Proposition 10.2 it follows that Clg, € K.
Together with the fact that g,h: Bly, — Clg, are homomorphisms such that g[, = hl,
and g(b) # h(b), this yields b € B — dk(Alg,, Bly,). Hence, dk(Algy,,Bly,) € du(A, B).
To prove the reverse inclusion, consider b € B — dk(Alg,, Blg,). Then there exist C € K
and a pair of homomorphisms g, h: By, — C such that g[ 4, = h[, and g(b) # h(b). Since
M = S(K[£%]) is a pp expansion of the universal class K by assumption, Proposition 9.6
guarantees that K is the class of £Lk-subreducts of K[£z]. So, there exists D € K[Z]
such that C < Dy, . As B,D € K[£F], the homomorphisms g,h: By, — D[y, can
by viewed as homomorphisms g,h: B — D by Proposition 9.5. Therefore, from D € M,
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gla = hl4, and g(b) # h(b) it follows that b € B — duw(A, B). Hence, conclude that
du(A, B) C dk(Alg,, Blg,)-

(ii): Assume that M is a Beth companion of K and consider A < B € M. We will show
that dk(Alg,, Blg,) = A. Since M = S(K[£F]), there exists C € K[£#] such that B < C.
As C € K[%£#], from (i) it follows that dkx(Alg,,Cly,) = A. Moreover, Corollary 4.6(i)
yields dx(Al¢,, Blg,) C dk(Alg,,Cly,). Therefore, d(Aly,, Blgy,) = A.

To prove the converse implication assume that dx(A[y,, Blg,) = A for all A < B € M.
By Proposition 6.6 and Theorem 11.6, to show that M is a Beth companion of K, it suffices to
establish that dy(C, D) = C for all C < D € M. Consider C < D € M. As M = S(K[Z£]),
there exists E € K[£#] such that D < E. Then

du(C, D) Cdu(C, E) = dk(Clg,., Ele,),

where the first equality holds by Corollary 4.6(i) and the second follows from (i) because
E € K[Z£#]. Our assumption implies that d(Clg, , Ely,) = C. Thus, duw(C,D) =C. KX

Proposition 13.29. Let My and My be a pair of Beth companions of a quasivariety K. Then
leggK = M2r5£K-

Proof. Since M; and M, are Beth companions of K, by Theorem 11.7 there exists a pair
of maps 7: Ly, — T, and p: Lyv, — T witnessing that M; and M,y are faithfully term
equivalent relative to K, where T; is the set of terms of M; in a countably infinite set of
variables for 7 = 1,2. By symmetry it suffices to show M; [, € Maly, . To this end, consider
A € M;. The definition of a faithful term equivalence yields p(A) € My and p(A)[y, = Alqy,
(see Remark 11.12(iii)). Therefore, Al = p(A)ly, € Maly, , as desired. X

We are now ready to prove Theorem 13.2.

Proof. We first prove the inclusion K[£ 7]l C K,c. Consider A € K[£z]. To show that A[e,
is absolutely closed in K, let B € K with Af, < B. We need to prove that dx(Alg, , B) = A.
Since M is a pp expansion of K, Proposition 10.2 guarantees the existence of C' € M such that
B < CJg,. Then Corollary 4.6(i) yields dx(Alg,, B) C dk(Alg,,Clg,). As M is a Beth
companion of K, from Proposition 13.28(ii) it follows that dx(Al,, Cly,) = A. Therefore,
dk(Algy,, B) = A, as desired

To prove the inclusion Kyc € Mg, , consider A € K,¢. Since F C ext(K), Proposition 9.6
implies that there exists B € K[£z] such that A < BJ,, . We show that A is the universe
of a subalgebra of B. From A < By, it follows that A is closed under the operations of
the language of K. Recall that every operation symbol of £ — £k is of the form g; for
some f € F. Consider an n-ary f € F. We will show that A is closed under g}? . Since
B € K[Z£], we have gj? = fBlex. Let a,...,a, € A. Since fP'*« is total, Theorem 4.10
vields 2!« (a1,...,a,) € dk(A, Blg,). As A is absolutely closed in K by assumption, we
have dx(A, Bly,) = A, and hence P (ay,...,a,) € A. We have shown that A is the
universe of a subalgebra of B. Therefore, we can expand A to an £y-algebra A* by setting
g7 = g4 for every gy € L5 — L. The definition of A* guarantees that A* < B. Since
B € M and M is a universal class by Theorem 10.3(i), we obtain A* € S(M) C M. Thus, we
conclude that A = A*[,, € MJqg, .
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It remains to show that, when M is an equational Beth companion of K, we have K c = MJ¢, .
Suppose that M is an equational Beth companion of K. Then M is faithfully term equivalent
to a Beth companion M* of K induced by a family of operations defined by conjunctions
of equations. Moreover, Theorem 10.4 yields that M* is of the form K[Zz:] for some
F* Cexteg(K). Then K[£L x|y, = M* [y, . Since K[£Lr][4, C Kic € M*[g, by the first two
paragraphs of this proof, we have Ko = M*[,, . As M and M* are Beth companions of K,
Proposition 13.29 yields M|, = M*[, . Hence, we conclude that K,c = Mg, . X

Lastly, we prove Theorem 13.3.

Proof. In view of Proposition 13.28(ii), to prove that M is a Beth companion of K, it suffices
to show that dx(Aly,, Bly,) = A for all A < B € M. To this end, consider A < B € M.
Since M is a universal class by Theorem 10.3(i), we obtain A € M. Therefore, the assumption
that M[¢, C K, implies Ay, € Kic. Hence, dk(Alqy, , Blg, ) = A. X

14. CLASSES WITHOUT A BETH COMPANION

We close this work by providing some examples of classes of algebras lacking a Beth
companion. The two main results of the section concern the varieties of monoids and
of commutative monoids (Theorem 14.1), and certain quasivarieties of Heyting algebras
(Theorem 14.11). We begin with the result on monoids.

Theorem 14.1. The varieties of monoids and of commutative monoids lack a Beth companion.

The theorem above is the starting point of a complete description of the varieties of
commutative monoids admitting a Beth companion. As the methods utilized in its proof go
beyond the theory of implicit operations developed here, we will provide such a description
in the separate work [31].

In order to prove Theorem 14.1, we first need to introduce the notion of a dominion base
and establish some technical results about dominion bases and implicit operations.

Definition 14.2. Let K be a class of algebras and A C imp,,(K). We say that A is a
dominion base for K when for all A < B € K and b € dk(A, B) there exist f € A and
{ay,...,a,) € dom(fB)N A" such that fB(ay,...,a,) =b.

Theorem 4.10 states that imppp(K) is a dominion base for every elementary class K, and
Isbell’s Zigzag Theorem 4.9 states that Isbell’s operations (see Example 3.14) form a dominion
base for the varieties of monoids and of commutative monoids. The following result illustrates
how having a concrete and transparent dominion base simplifies the task of finding interpolants
for implicit operations.

Theorem 14.3. Let K be a quasivariety with dominion base A and f € imp,,(K) of arity n.
Then there exist g € A and n-ary terms ty, ..., t,, of K such that the composition g(t\, ... tX)
interpolates f in K.

Proof. Let ¢ be a pp formula defining f. Then

o1,y y) = 321, 20(20, -0 2R Ty T, ),
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where 1 is a conjunction of equations. Let X = {z1,..., 2z, 21,...,Tp,y}. Since K is a
quasivariety, the free algebra Fi(X) belongs to K (see Theorem 2.19). We denote by 6 the
K-congruence of Fyx(X) generated by the pairs (si, s2), where s; = s is an equation in ).
Consider B = Fi(X)/6 and A = Sg®(x,/0, ..., 1,/0). The definition of # implies that

B':¢<zl/07azk/gvxl/eaamn/evy/e)

Therefore, (x1/0,...,2,/0) € dom(fB)and fB(x,/0,...,1,/0) = y/0 because f is defined by
¢. As f € imp, (K) by assumption and x1/0,...,7,/0 € A by the definition of A, it follows
from Theorem 4.10 that y/0 € dx(A, B). Since A is a dominion base for K and A is generated
by x1/0,...,x,/0, there exist an m-ary g € A and terms t1(x1,...,2,), ..., tm(T1, ..., T,) of
K such that

tB(x1/0,...,2,/0),... ,tB(x1/0,...,2,/0)) € dom(gP) (64)

and
gB(tB(21/0,...,2,/0),...,tB(21/0,...,2,/0)) = y/0. (65)
We will prove that g(t¥,... tX) interpolates f in K. To this end, consider C € K and

C1,...,Cn,d € C such that (c;,...,c,) € dom(f¢) and f(ci,...,c,) = d. We need to show
that

{t%cry. . ), .. tS ety .. en)) € dom(g€) and g€ (t(cy, ... cn), .. tC(cr, ... ) = d.
Since f is defined by ¢, from f€(cy,...,c,) = d it follows that C E ¢(ey, ..., ek, C1, ..., Cn,d)
for some ey, ..., e, € C. Therefore,

CEsi(er, .. €501,y Cnd) = So(€1,. .., €,CynnnyCpyd) (66)

for every equation 1 = sy in ¥. As X = {zy,...,2k,21,...,2Zp,y} is a set of free generators
for Fx(X), there exists a homomorphism h: Fx(X) — C such that h(z;) = e; and h(x;) = ¢;
for each 7, and h(y) = d. The definition of § and (66) yield # C Ker(h). Since B = Fx(X)/0,
Proposition 2.6 implies that the homomorphism h induces a homomorphism k: B — C' such
that k(z;/0) = e; and k(z;/0) = ¢; for each i, and k(y/6) = d. Since k is a homomorphism,

we obtain

t9cr, ... en) = tB(k(x1/0), ..., k(x,/0) = k(tB(x,/0,. .. ,2,/0))

for each i < m. So, (64) implies (t€(c1,...,¢cn),...,tC(c1,...,¢c,)) € dom(g®) because
g € imp,,(K). We also have
gt (cr,. . en), . tC (e, . )

=gt (k(x1/0), ..., k(x,/0)),... tB(k(x1/0),... k(z,/0)))
= k(gB(tB(x./0,...,2,/0),...,tB(21/0,...,2,/0)))

= k(y/0)

=d,

where the first equality holds because k(z;/0) = ¢; for each i, the second follows from the
assumptions that k is a homomorphism and g € imp,,(K), the third from (65), and the
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last from k(y/0) = d. Hence, we conclude that g€ (t%(c1,...,cn),...,tS(c1,...,¢c0)) = d, as
desired. X

We now apply Theorem 14.3 and the fact that Isbell’s operations form a dominion base to
deduce a useful property of implicit operations of the variety of (commutative) monoids.

Proposition 14.4. Let K be either the variety of monoids or the variety of commutative
monoids. For every unary f € imp,,(K) there exist [, € N such that a'fA(a) = a" for all
A €K and a € dom(f4).

Proof. Consider a unary f € imp,,(K). For each n € N we denote by g, the implicit operation
of K defined by the n-th Isbell’s formula (see Example 3.14). As Isbell’s operations form
a dominion base for K, Theorem 14.3 yields n € N and unary terms ¢y, ..., 5,1 such that
gn (S, 1S +1) interpolates f in K. As unary terms of K are equivalent to powers of a
variable, there exist ey, ..., e,11 € N such that K E ¢;(x) = x% for each i < 2n + 1.

Recall that g¢' is the identity function for every A € K. Thus, when n = 0 we have
fA(a) = tf(a) = a® for all A € K and a € dom(f4), and hence we can take [ = 0 and r = e;.
So, in the rest of the proof we will assume that n > 0. Let { = > """ | ey and r = )"  e241.
Consider A € K and a € dom(f4). We show that a'f4(a) = a". To this end, let a; = a® for
every i < 2n+ 1. Then f4(a) = g2 (a1, ..., az,11) because g, (¥, ..., tK ) interpolates f
in K and K F ¢;(z) = z¢ for each i < 2n + 1. Notice that aq, ..., as,41 pairwise commute
because they are powers of a in A.

We will rely on the next fact, which was established under the commutativity assumption
in [71, proof of 2.7].

Claim 14.5. We have (]}, a2)f?(a) = [T\, a2it1-

Proof of the Claim. As fA(a) = g?(ay,...,as,11), the definition of g, implies that there
exist ¢y, ..., c, € A satisfying
(i) fA(a) = arcn;
(i) agic; = agip1¢i4q for every 1 <i < n— 1;
(111) AonCp = A2pn11-
=14

Let c,y41 . To conclude the proof of the claim, it suffices to show that for every positive

m<n,
(H a2i> fA(a) = (H a2i+1) Cm+1- (67)
i=1 i=0
This is because we set ¢,11 = 14 and, therefore, for m = n we obtain ([]/_, as)f%(a) =

(H?:o A2i41)Cnt1 = H?:o a9;+1, as desired.
The proof of the above display proceeds by induction on m < n. First, we have

asfA(a) = asarc; = ayasc; = ajascy,

where the first equality holds by (i), the second because a; and ay commute, and the third
follows from (ii). Therefore, (67) holds for m = 1. Suppose now that 1 < m < n. We
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show that (67) holds for m under the assumption that it holds for m — 1, which means that
([T @2i) f4(a) = (117" azis1)em. We have

m m—1 m—1 m—1
A o A _ .
ag | f (a) = Q2m ay | f (a) = Q2m A2i+1 | Cm = A2;4+1 | G2mCm
i=1 i=1 i=0 i=0
m—1 m
= H @241 | A2m+1Cm41 = H a2i+1 | Cm+1,
i=0

i=0

where the first and third equalities hold because as,, commutes with every a;, the second
follows from the induction hypothesis, the fourth is a consequence of (ii) when i <n — 1 and
of (iii) and ¢,,; = 14 when m = n, and the last is straightforward. This shows that (67)
holds for every m < n. X

Since I = > eq and r =" eg41, we have

n n n n
| | Q2; = Hae% =d' and | | A9ir1 = | | a®®* =a".
i=1 i=1 i=0 =0

Therefore, Claim 14.5 yields

n

alfA(a) = (H (1/27;> fA(a) = HCL%H =a. X

i=0
We will also need the following technical result.

Proposition 14.6. Let K be a quasivariety with a Beth companion of the form S(K[Z#]).
Then for every f € imp,,(K) there exists g € ext,,(K) that interpolates f in K[Lx]lq, .

Proof. Since f € imp,,(K), by Theorem 11.6 there exists a term ¢ of £ that interpolates f
in S(K[£#]). As f has positive arity and ¢ interpolates f, it follows that ¢ is not a constant.
So, Proposition 10.22(ii) yields g € ext,,(K) such that

tB = ¢Ple for every B € K[%].

We will show that g interpolates f in K[£z]ly, . Let A € K[£f]l4, and (a1,...,a,) €
dom(f4). As A[%L7] € K[%x] and A = A[£LF]]4,, the above display implies that (A7) = g4,

It follows that g4 is total, and hence (ay,...,a,) € dom(g#). Since t interpolates f in
S(K[%#]), we obtain

fAay, .. an) = A5 ec(ay, o ay) = 25 (ay, . an) = g™aa, - an).
We conclude that g interpolates f in K[£z][q,. X

We are now ready to prove Theorem 14.1.

Proof. Let K be either the variety of monoids or the variety of commutative monoids and
assume, with a view to contradiction, that K has a Beth companion. Corollary 11.5 implies
that K has also a Beth companion of the form S(K[££]). Let f be the operation of taking
inverses in monoids. Then f € imp,,(K) by Theorem 3.7. Proposition 14.6 yields a unary
g € exty,(K) that interpolates f in K[££][4,. By Proposition 14.4 there exist [,r € N such
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that a'g#(a) = a” for all A € K and a € dom(g?). Since K is a variety and S(K[£#]) a pp
expansion of K, Proposition 10.2 implies that K = S((S(K[££])) I, ). Hence, K C S(K[£F][¢, )-
Therefore, there exists an extension B of the multiplicative monoid Q of the rationals such
that B € K[£#][y,. Then g is total because g € ext,,(K) = F. Since g interpolates f in
KILF]lg,, we obtain ¢B(2) = fB(2) = f9(2) = 271, Therefore, 27! = 2/¢B(2) = 2". So,
2!=1 = 2" holds in Q. In turn, this implies [ = r + 1. Consequently,

a"g?(a) = a” for all A € K and a € dom(g*). (68)
Claim 14.7. There exist C € K and c € C such that ¢" # ¢ and ¢! = 2.

Proof of the Claim. Let C be the set of symbols {ci :0 <i <7+ 1} and define the following
binary operation on C'

o At <r+1;

c-d= '

¢t otherwise.

It is straightforward to verify that this defines a commutative monoid C with neutral element
. So, C € K. Let ¢ = ¢!. Then ¢ is the i-th power of ¢! for every i < r + 1. From the
definition of C it then follows immediately that ¢ # ¢"*! and ¢! = "2 X

Let C and ¢ € C be as in Claim 14.7. Since g € ext,,(K), there exists D € K such that
C < D and ¢P is total. From ¢ € dom(gP) and (68) it follows ¢"*1gP(c) = ¢". Thus, using

=2 we deduce
CT — Cr+1gD(C) — Cr+2gD<C) — CCT+1gD(C) — CCT — Cr+1,
a contradiction with ¢ # ¢"*! in C. X

Remark 14.8. The proof of Theorem 14.1 can easily be adapted to show that both the variety
of semigroups and the variety of commutative semigroups lack a Beth companion. To see
this, recall that Isbell’s formulas (see Example 3.14) also form a dominion base for these
varieties (see [71, Thm. 2.3| for semigroups and [69, Thm. 1.1] for commutative semigroups).
The changes required for adapting the proof of Theorem 14.1 are limited to the following.
First, the role of the implicit operation f defined by ¢ = (x -y~ 1) M (y -z =~ 1) should be
taken over by the implicit operation g defined by
b= yma)N(y o=y N@-y=y- ),

which also defines inverses when they exist. In particular, g coincides with f on Q. Moreover,
the monoids Q and C appearing in the proof of Theorem 14.1 should be replaced by their
semigroup reducts. Lastly, the proof of Claim 14.5 uses the fact that A has a neutral element,
which need not be the case if A is an arbitrary semigroup. This problem can be overcome
easily by adding a neutral element to A in the proof of that claim.

On the other hand, the implicit operation g becomes extendable when restricted to the
quasivariety CCS of cancellative commutative semigroups. In fact, an argument similar to the
one detailed in the proof of Theorem 11.9(i) shows that the pp expansion of CCS induced by
g is the Beth companion of CCS and, moreover, is term equivalent to the variety of Abelian
groups (inversion is given by g and the neutral element is rendered as the unary operation

z- g(a). =
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The second main result of the section gives a sufficient condition for a quasivariety of
Heyting algebras to lack a Beth companion. In order to state it, we first need to recall some
definitions. The first is the notion of a maximal relatively subdirectly irreducible algebra in a
quasivariety (see, e.g., [76, p. 81]).

Definition 14.9. Let K be a quasivariety. We say that A € Kgg is mazimal when A cannot
be properly embedded into any B € Kgg. We denote by M(Kgg) the class of maximal
members of Kgg.

We will also make use of the ordered sum, an operation that has been extensively used to
study implicit definability and surjectivity of epimorphisms in varieties of Heyting algebras
(see, e.g., [90, p. 87] and [94, p. 9]). Intuitively, the ordered sum of two Heyting algebras A
and B is the result of pasting A below B and gluing the top element 14 of A to the bottom
element 08 of B.

Definition 14.10. Let A and B be a pair of Heyting algebras. Their ordered sum (also
known as vertical sum or just sum) A + B is the unique Heyting algebra whose universe is
the disjoint union of A — {14} and B and whose lattice order is given by

c<d <= either (c,d € A— {1} and ¢ <* d)
or (¢,d € B and ¢ <® d)
or (c€ A—{14} and d € B),
where <4 and <P denote the lattice orders of A and B, respectively.

In the following, for each n € Z* we will denote by C,, the n-element linearly ordered
Heyting algebra. We are now ready to state the second main result of the section.

Theorem 14.11. Let K be a relatively congruence distributive quasivariety of Heyting
algebras. If there exists a Heyting algebra A such that A + Cs € M(Kgg ), then K lacks a
Beth companion.

To give a better understanding of the applicability of Theorem 14.11, we rely on the next
characterization of relatively congruence distributive quasivarieties of Heyting algebras, where
HA stands for the variety of Heyting algebras.

Theorem 14.12. A quasivariety K of Heyting algebras is relatively congruence distributive if
and only if K= Q(M) for some universal class M such that M C HAg,.

Proof. Let K be a quasivariety of Heyting algebras. Since the variety HA is congruence
distributive by Theorem 7.2, from [40, Cor. 1.4] it follows that K is relatively congruence
distributive if and only if Kypg; € HApg. Therefore, it only remains to prove that Kgpgy € HApg
if and only if there exists a universal class M such that K = Q(M) and M C HA.,.

We first establish the implication from left to right. To this end, assume that Kgrgy € HARg;.
Let M = U(Kgggr). The Subdirect Decomposition Theorem 2.9 yields K = Q(Kgps;). It follows
that K = Q(M) because Kprg € M C K. It is well known (see, e.g., [85, Prop. A.4.3]) that a

Heyting algebra is finitely subdirectly irreducible if and only if its greatest element is join
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irreducible, a property that can be expressed with a universal sentence. Therefore, HA., is a
universal class by Theorem 2.1(iii). Then

M= U(KRFSI) - U(HAFSI> - HAFSI‘

Thus, M has the desired properties. For the converse implication, assume that there exists
a universal class M such that K = Q(M) and M C HA.. Theorem 2.13 implies that
Kirst = Q(M)gps C ISP, (M). Then Kgpg € U(M) by Theorem 2.2. As M is a universal class

contained in HAy, we obtain
KRFSI g U(M) =M g HAFSI7
as desired. X

Before presenting its proof, we first establish a series of consequences of Theorem 14.11. As
every variety of Heyting algebras is congruence distributive (see Theorem 7.2), the following
is an immediate corollary of Theorem 14.11.

Corollary 14.13. Let K be a variety of Heyting algebras. If there exists a Heyting algebra A
with A + C5 € M(Ky,), then K lacks a Beth companion.

We will use the following consequence of Theorem 14.11 to show that infinitely many
varieties of Heyting algebras lack a Beth companion.

Corollary 14.14. Let K be a finite set of finite Heyting algebras such that Q(K) is relatively
congruence distributive. Assume that there exists a Heyting algebra A such that A + Cs € K
and A + C5 cannot be properly embedded into any member of K. Then Q(K) lacks a Beth
companion.

Proof. By Theorem 14.11 it is sufficient to show that A + C5 € M(Q(K)zg). Since K is a
finite set of finite Heyting algebras, P, (K) C I(K) (see Proposition 2.14). Consequently, from
Theorem 2.13 it follows that Q(K)gzs € IS(K). Therefore, if A + C5 embeds properly into a
member of Q(K)gg, then it also embeds properly into a member of K, but this contradicts
our hypothesis. Thus, A + C5 € M(Q(K)gg)- X

We also obtain an analogue of Corollary 14.14 for finitely generated varieties of Heyting
algebras.

Corollary 14.15. Let K be a finite set of finite Heyting algebras. Assume that there exists a
Heyting algebra A such that A + C5 € K and one of the following conditions holds:

(i) A+ C5 € HS(B) implies A+ Cs = B for each B € K;

(i) all members of K have size at most |A + Cs|.
Then V(K) lacks a Beth companion.

Proof. Suppose that (i) holds. By Corollary 14.13 it suffices to show that A+C5 € M(V(K)g).
Suppose, with a view to contradiction, that there exists D € V(K)g into which A+ Cj properly
embeds. Since K is a finite set of finite Heyting algebras, P, (K) C I(K) (see Proposition 2.14).
Since V(K) is congruence distributive by Theorem 7.2, from Jénsson’s Theorem 2.12 it
follows that V(K)y, € HS(K). Then D € HS(K), and so there exists B € K such that
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D € HS(B). Since A + C5 embeds into D, we have A + C5 € ISHS(B). For every class
M we have SH(M) C HS(M) (see, e.g., 21, Lem. 11.9.2]) and IH(M) = H(M). Consequently,
ISHS(B) = HS(B), and hence A + C; € HS(B). Then (i) implies A+ C5 = B. Recall that
A+ C5, B € K and all the members of K are finite. Therefore, since A 4+ C5 properly embeds
into D and D € HS(B), we have |A + C;| < |D| < |B|. Thus, we reached a contradiction
because A + C5 = B.

To conclude the proof, it is then sufficient to show that (ii) implies (i). Let B € K be
such that A 4+ Cs € HS(B). Then |A + C;| < |B|. So, (ii) yields |A + C5| = |B|. Since
A+ C5 € HS(B) and B is finite (the latter because B € K and K is a class of finite algebras
by assumption), we obtain that A + C5 = B. Thus, (i) holds. X

Example 14.16 (Godel algebras). A Heyting algebra is called a Gddel algebra when it satisfies
the prelinearity axiom (x — y) V (y — =) = 1. From a logical standpoint, the interest of
Godel algebras is that they algebraize the Godel-Dummett logic (see, e.g., [33, 61]).

The variety GA of Godel algebras is generated by the class of all finite linearly ordered
Heyting algebras or by any infinite linearly ordered Heyting algebra (see [67, Thm. 1.5]).
Every proper subvariety of GA is of the form V(C,,) for n > 1 and V(C,) C V(C,,) if and
only if n < m (see [46, 62]). The next result governs the existence of a Beth companion for
varieties of Godel algebras.

Theorem 14.17. A wvariety V of Gadel algebras lacks a Beth companion if and only if
V = V(C,) forn > 5. All the remaining varieties of Gddel algebras are their own Beth
companion.

Proof. From [90, Thm. 8.1] it follows that the varieties of Godel algebras with the strong
epimorphism surjectivity property are exactly GA and V(C,,) for n < 4. Hence, these varieties
are their own Beth companions by Theorem 11.9(vi). Let n > 5. As C,, = C,,_4 + Cs, from
Corollary 14.15 it follows that V(C,,) lacks a Beth companion. X

In order to prove Theorem 14.11, we first establish a series of useful results.

Proposition 14.18. Let K be a quasivariety and f € ext,,(K). Then f4 is total for every

Proof. First, assume that A € M(Kgg). Since f € ext,,(K) and A € Ky, by Theorem 8.4
there exists B € Kgg such that A < B and fB is total. The maximality of A implies that
A = B. This shows that f4 is total for every A € M(Kgg). Then let M = {A € K :
fA is total}. We have M(Kgg) € M. Our goal is to show that HP(M (Kgg)) N K C M. Since
M C K and K is a quasivariety, we have P(M)NK = P(M). Therefore, applying Proposition 9.7
twice with @ = P and O = H, we obtain

HP(M (Kps)) N K C HP(M)NK C H(P(M)NK)NK C H(M)NK C M. X

Proposition 14.19. Let K be a quasivariety with a Beth companion. Moreover, let A, B €
HP(M (Kgsi)) NK be such that A < B. Then dg(A, B) = A.
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Proof. We may assume that K has a Beth companion of the form S(K[£#]). Proposition 14.18
implies that f4 and fB are total for every f € F. Therefore, A[£x] and B[£ ] are defined
and are members of K[£x]. It then follows from Proposition 13.28(ii) that

dk(A, B) = dk(A[LF] f%K»B[EBI] fng) = A X

Proposition 14.20. Let K be a quasivariety. Then dx(A, B) = dk,, (A, B) for all Lk-
algebras A, B such that A < B.

Proof. From the definition of a dominion it follows immediately that dx (A, B) C dk,, (A, B).
To prove the other inclusion, let b € B and assume that b ¢ dx(A, B). Then there exist
C € K and homomorphisms g,h: B — C such that g/, = h[, and g(b) # h(b). The
Subdirect Decomposition Theorem 2.9 implies that there exists {C; : i € I} C Kgg such that
C < Hie ; C; is a subdirect product. For each i € I let p;: C — C; be the restriction of the
canonical projection. Since g(b) # h(b), there exists ¢ € I such that (p; o g)(b) # (p; o h)(b).
As (piog)la =pio(gla) =pio(hl4) = (pioh)l4, the homomorphisms p; 0 g,p;oh: B = C;
witness that b ¢ dg,, (A, B). Thus, dg, (A, B) C dk(A, B). X

Proposition 14.21. Let K be a relatively congruence distributive quasivariety of Heyting
algebras. Let also Ay, Ay, B be Heyting algebras with B € Kyry and h: Ay X As — B a
homomorphism. Then there exist i € {1,2} and a homomorphism g: A; — B such that
h = gom;, where m;: Ay x Ay — A, is the canonical projection map.

Proof. Since K is relatively congruence distributive and B € Ky, from [40, Cor. 1.4] it
follows that B is a finitely subdirectly irreducible Heyting algebra. Therefore, the greatest
element 1B of B is join irreducible (see, e.g., [85, Prop. A.4.3]). Let 04¢ and 14¢ be the least
and greatest elements of A; for i = 1,2. Then

17 = h((1%,142)) = A((0%, 142) v (141,0%2)) = h((0%,142)) v h((14, 0%2)).
Since 12 is join irreducible, we have
h((041,142)) = 1B or h((1%1,042)) = 1B,
By symmetry we may assume that h({041,142)) = 1B, We will prove that
h({a,c)) = h({b,c)) for all a,b € A; and ¢ € A,. (69)
To this end, observe that
h({a,c)) — h((b,c)) = h({a — b,c — c)) = h({a — b, 142)) > h((04*,142)) = 1B

and, therefore, h({a,c)) < h((b,c)). An analogous argument shows that h({(b,c)) < h({a,c)),
whence h({a,c)) = h((b,c)), as desired.

Lastly, from (69) it follows that ker(my) C ker(h). As a straightforward consequence of
Proposition 2.6 (see, e.g., [11, Ex. 1.26.8]), we obtain a homomorphism g: A, — B such that
h = goms. X

We are now ready to prove Theorem 14.11.

Proof. To simplify the notation, we let B = A + C5.
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Claim 14.22. There exists D € H(B) such that D < B x B and dx(D, B x B) # D.

Proof of the Claim. Let the elements of Cs be 095 = ¢; < ¢y < ¢35 < ¢4 < ¢5 = 195, Recall
that B = (A — {14}) U Cs5. We define

D={{a,a):a € A— {1} U {{c1,c1), (c2,¢3), {ca, ca), {c5,¢5)} € B x B.

As B = A + Cs and C; is linearly ordered, the implication —2 of B can be described in
terms of the implication —# of A as follows. For all a,b € B we have

Cs if a < b;
a—=Bb={a—>4b ifa £ band a,be A—{14};
b otherwise.

It is then immediate to verify that D < B x B. Moreover, a straightforward verification
yields that the map k: B — B x B defined as follows is a homomorphism whose image is D:
for every b € B,
b, b) if b€ {c1,c5) U (A— {14});
co,c3)  if b= co;
cy,cq)  if b= cs;
cs,c5)  if b=y,
Thus, D € H(B).
Therefore, it only remains to show that dx (D, B x B) # D. By Proposition 14.20 we have

dk(D, B x B) = dx, (D, B x B).

Since (cs, c4) € (B x B)— D, it suffices to show (cs, c4) € dg,, (D, BxB). Let g,h: Bx B —
E be a pair of homomorphisms such that E € Kyg and g, = h[p. We need to prove that
g({cs,cq)) = h({cs,c4)). Since E € Kyg C Kgps, Proposition 14.21 yields that both g and
h factor through a projection. We have two cases: either g and h factor through the same
projection or not.

First, suppose that g and h factor through m;. Then there exists a pair of homomorphisms
g h': B — E such that ¢ = ¢’ om; and h = I/ o m;. Therefore,

9((cs,ca)) = g'(5) = 17 = W (c5) = h((cs, ca)),

where the second and third equalities hold because c5 is the greatest element of B, and the
others because g = ¢’ oy and h = b/ o 7y.

Next we consider the case where both g and h factor through 7. Then there exists a pair
of homomorphisms ¢, h»': B — FE such that ¢ = ¢’ o my and h = h/ o 9. Therefore,

9((cs,ca)) = g'(ca) = g({ea; ca)) = hl(ca, ca)) = P (ca) = h({es, ca)),

where the middle equality holds because (cy4, ¢4} € D and g[,, = h[p, and the others because
g=¢g omand h = h' om,.

Lastly, suppose that g and h factor through different projections. Without loss of generality,
we may assume that g factors through m; and h factors through ms. Then there exists a pair
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of homomorphisms ¢’,h’': B — E such that g = ¢’ om; and h = I’ o my. Since g[p = hlp
and (¢, c3), (¢4, c4) € D, we obtain

g'(ca) = g({ca, c3)) = h({ca, c3)) = I'(c3); (70)
g'(cs) = g((ca, ca)) = h({ca, ca)) = I (ca). (71)

Assume, with a view to contradiction, that both ¢’ and A’ are injective. As B € M(Kgg) by
assumption and E € Kgg, it follows that ¢’ and h’' are isomorphisms. Since c3 is the only
element a of B such that {b € B : a < b} has size 3, every automorphism of B must fix
c3. It follows that ¢'(c3) = h/(c3) because (B')~! o ¢’ is an automorphism of B. Then (70)
yields ¢'(co) = W (c3) = ¢'(c3), which is impossible because ¢’ is injective. Therefore, either ¢’
or h' is not injective. Suppose first that ¢’ is not injective. Then there exist a,b € B such
that a £ b and ¢'(a) = ¢’(b). As a £ b and ¢’ is a homomorphism, we obtain a =% b # 18
and ¢'(a =B b) = ¢'(a) =¥ ¢'(b) = 1F. Note that every Heyting algebra homomorphism
is order preserving because it is a lattice homomorphism. Therefore, since ¢4 is the second
greatest element of B, we have a =B b < ¢4 and, consequently, 1€ = ¢'(a =B b) < ¢'(c4).
So, ¢'(c4) = 1E. Then we have

g((cs, ca)) = ¢'(c5) = 17 = ¢'(ca) = I/ (ca) = h((c5, ca)),

where first and last equalities hold because g = ¢’ o m; and h = h/ o 1y, the second because
cs is the greatest element of B, the third because ¢'(cs) = 1¥ as we just observed, and the
fourth follows from (71). Next, suppose that A’ is not injective. An argument similar to the
one above shows that h'(c,) = 1. Then

h({cs, ca) = W' () = 1% = g'(cs) = g({es, ca)),

where first and last equalities hold because g = ¢’ o 7y and h = h' o 1y, the second because
h'(cy) = 17 as we just observed, and the third because c5 is the greatest element of B. We
conclude that g((cs, cs)) = h({cs,c4)) in all possible cases. Thus, (cs,c4) € dk,, (D, B x B),
as desired.

X

Let D be as in Claim 14.22. As B € K, D < B x B, and K is a quasivariety, we
obtain D, B x B € K. Since B € M(Kg) and D € H(B), it follows that D, B x B €
HP(M (Kgg)) N K. If K had a Beth companion, then Proposition 14.19 would imply that
dk(D, B x B) = D, contradicting Claim 14.22. Thus, K lacks a Beth companion. X
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